Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches
In this study, the effects of retained austenite (RA) and residual stress on rolling contact fatigue (RCF) of carburized AISI 8620 steel were investigated through modeling and experiments. In modeling, a two-dimensional finite element RCF model was developed to examine the crack propagation and fati...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-08, Vol.732, p.311-319 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 319 |
---|---|
container_issue | |
container_start_page | 311 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 732 |
creator | Ooi, George Theng Ching Roy, Sougata Sundararajan, Sriram |
description | In this study, the effects of retained austenite (RA) and residual stress on rolling contact fatigue (RCF) of carburized AISI 8620 steel were investigated through modeling and experiments. In modeling, a two-dimensional finite element RCF model was developed to examine the crack propagation and fatigue life of carburized AISI 8620 steel. An extended finite element method (XFEM) was used to initiate and propagate the cracks in the model. A Voronoi Tessellation was randomly generated to simulate the randomness of the microstructures in steel. The cracks were initiated on the grain boundaries of a Voronoi cell prior to the simulations at different locations in the RCF model. The RCF life of the samples was determined by rolling contact fatigue tests. The results in both simulations and experiments showed that the higher level of RA and compressive residual stress achieved improved RCF life through mitigation of crack propagation. The effect of increased RA led to significant improvement on RCF life as compared to increased in compressive residual stress. |
doi_str_mv | 10.1016/j.msea.2018.06.078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2114215550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318308736</els_id><sourcerecordid>2114215550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a5930637ce66ad7a36f840c18ddd80f2cb9771987e80a6793b090e703bb5cc7e3</originalsourceid><addsrcrecordid>eNp9kc9q3DAQh0VoINukL9CTIGc7I8uWbMilhM0fSOilgdyELI13tTjyVpK3bV4kr1u523NOGsR83wzzI-Qrg5IBE1e78jWiLitgbQmiBNmekBVrJS_qjotPZAVdxYoGOn5GPse4AwBWQ7Mi7w_-gDG5jU7Ob2jaIsVhQJPoNNCASTuPluo5JvQuIdXe5u_o7KxHGlMuI508DdM4LryZfNIZHrJuM-MiMTr0c3BvWZMlONJfLm3py-366Z8Mf-8xuFfM3Ej1fh8mbbYYL8jpoMeIX_6_5-T5dv3j5r54_H73cPPtsTBcVqnQTcdBcGlQCG2l5mJoazCstda2MFSm76RkXSuxBS1kx3voACXwvm-MkcjPyeXRmwf_nPMl1G6ag88jVcVYXbGmaSB3VccuE6YYAw5qn3fW4Y9ioJYA1E4tAaglAAVC5QAydH2EMO9_cBhUNA69QetCPrCyk_sI_wvnHZIW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114215550</pqid></control><display><type>article</type><title>Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ooi, George Theng Ching ; Roy, Sougata ; Sundararajan, Sriram</creator><creatorcontrib>Ooi, George Theng Ching ; Roy, Sougata ; Sundararajan, Sriram</creatorcontrib><description>In this study, the effects of retained austenite (RA) and residual stress on rolling contact fatigue (RCF) of carburized AISI 8620 steel were investigated through modeling and experiments. In modeling, a two-dimensional finite element RCF model was developed to examine the crack propagation and fatigue life of carburized AISI 8620 steel. An extended finite element method (XFEM) was used to initiate and propagate the cracks in the model. A Voronoi Tessellation was randomly generated to simulate the randomness of the microstructures in steel. The cracks were initiated on the grain boundaries of a Voronoi cell prior to the simulations at different locations in the RCF model. The RCF life of the samples was determined by rolling contact fatigue tests. The results in both simulations and experiments showed that the higher level of RA and compressive residual stress achieved improved RCF life through mitigation of crack propagation. The effect of increased RA led to significant improvement on RCF life as compared to increased in compressive residual stress.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.06.078</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Austenite ; Austenitic stainless steel ; Carburizing ; Compressive properties ; Computer simulation ; Contact stresses ; Crack propagation ; Fatigue cracks ; Fatigue failure ; Fatigue life ; Fatigue tests ; Finite element method ; Fracture mechanics ; Grain boundaries ; Mathematical analysis ; Modelling ; Nickel chromium molybdenum steels ; Residual stress ; Retained austenite ; Rolling contact ; Rolling contact fatigue ; Steel ; Stress propagation ; Tessellation ; Two dimensional models ; Ultrasonic testing ; Voronoi Tessellation ; XFEM</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-08, Vol.732, p.311-319</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 8, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a5930637ce66ad7a36f840c18ddd80f2cb9771987e80a6793b090e703bb5cc7e3</citedby><cites>FETCH-LOGICAL-c372t-a5930637ce66ad7a36f840c18ddd80f2cb9771987e80a6793b090e703bb5cc7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2018.06.078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Ooi, George Theng Ching</creatorcontrib><creatorcontrib>Roy, Sougata</creatorcontrib><creatorcontrib>Sundararajan, Sriram</creatorcontrib><title>Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>In this study, the effects of retained austenite (RA) and residual stress on rolling contact fatigue (RCF) of carburized AISI 8620 steel were investigated through modeling and experiments. In modeling, a two-dimensional finite element RCF model was developed to examine the crack propagation and fatigue life of carburized AISI 8620 steel. An extended finite element method (XFEM) was used to initiate and propagate the cracks in the model. A Voronoi Tessellation was randomly generated to simulate the randomness of the microstructures in steel. The cracks were initiated on the grain boundaries of a Voronoi cell prior to the simulations at different locations in the RCF model. The RCF life of the samples was determined by rolling contact fatigue tests. The results in both simulations and experiments showed that the higher level of RA and compressive residual stress achieved improved RCF life through mitigation of crack propagation. The effect of increased RA led to significant improvement on RCF life as compared to increased in compressive residual stress.</description><subject>Austenite</subject><subject>Austenitic stainless steel</subject><subject>Carburizing</subject><subject>Compressive properties</subject><subject>Computer simulation</subject><subject>Contact stresses</subject><subject>Crack propagation</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Grain boundaries</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><subject>Nickel chromium molybdenum steels</subject><subject>Residual stress</subject><subject>Retained austenite</subject><subject>Rolling contact</subject><subject>Rolling contact fatigue</subject><subject>Steel</subject><subject>Stress propagation</subject><subject>Tessellation</subject><subject>Two dimensional models</subject><subject>Ultrasonic testing</subject><subject>Voronoi Tessellation</subject><subject>XFEM</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc9q3DAQh0VoINukL9CTIGc7I8uWbMilhM0fSOilgdyELI13tTjyVpK3bV4kr1u523NOGsR83wzzI-Qrg5IBE1e78jWiLitgbQmiBNmekBVrJS_qjotPZAVdxYoGOn5GPse4AwBWQ7Mi7w_-gDG5jU7Ob2jaIsVhQJPoNNCASTuPluo5JvQuIdXe5u_o7KxHGlMuI508DdM4LryZfNIZHrJuM-MiMTr0c3BvWZMlONJfLm3py-366Z8Mf-8xuFfM3Ej1fh8mbbYYL8jpoMeIX_6_5-T5dv3j5r54_H73cPPtsTBcVqnQTcdBcGlQCG2l5mJoazCstda2MFSm76RkXSuxBS1kx3voACXwvm-MkcjPyeXRmwf_nPMl1G6ag88jVcVYXbGmaSB3VccuE6YYAw5qn3fW4Y9ioJYA1E4tAaglAAVC5QAydH2EMO9_cBhUNA69QetCPrCyk_sI_wvnHZIW</recordid><startdate>20180808</startdate><enddate>20180808</enddate><creator>Ooi, George Theng Ching</creator><creator>Roy, Sougata</creator><creator>Sundararajan, Sriram</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180808</creationdate><title>Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches</title><author>Ooi, George Theng Ching ; Roy, Sougata ; Sundararajan, Sriram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a5930637ce66ad7a36f840c18ddd80f2cb9771987e80a6793b090e703bb5cc7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Austenite</topic><topic>Austenitic stainless steel</topic><topic>Carburizing</topic><topic>Compressive properties</topic><topic>Computer simulation</topic><topic>Contact stresses</topic><topic>Crack propagation</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Grain boundaries</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><topic>Nickel chromium molybdenum steels</topic><topic>Residual stress</topic><topic>Retained austenite</topic><topic>Rolling contact</topic><topic>Rolling contact fatigue</topic><topic>Steel</topic><topic>Stress propagation</topic><topic>Tessellation</topic><topic>Two dimensional models</topic><topic>Ultrasonic testing</topic><topic>Voronoi Tessellation</topic><topic>XFEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ooi, George Theng Ching</creatorcontrib><creatorcontrib>Roy, Sougata</creatorcontrib><creatorcontrib>Sundararajan, Sriram</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ooi, George Theng Ching</au><au>Roy, Sougata</au><au>Sundararajan, Sriram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2018-08-08</date><risdate>2018</risdate><volume>732</volume><spage>311</spage><epage>319</epage><pages>311-319</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>In this study, the effects of retained austenite (RA) and residual stress on rolling contact fatigue (RCF) of carburized AISI 8620 steel were investigated through modeling and experiments. In modeling, a two-dimensional finite element RCF model was developed to examine the crack propagation and fatigue life of carburized AISI 8620 steel. An extended finite element method (XFEM) was used to initiate and propagate the cracks in the model. A Voronoi Tessellation was randomly generated to simulate the randomness of the microstructures in steel. The cracks were initiated on the grain boundaries of a Voronoi cell prior to the simulations at different locations in the RCF model. The RCF life of the samples was determined by rolling contact fatigue tests. The results in both simulations and experiments showed that the higher level of RA and compressive residual stress achieved improved RCF life through mitigation of crack propagation. The effect of increased RA led to significant improvement on RCF life as compared to increased in compressive residual stress.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.06.078</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-08, Vol.732, p.311-319 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2114215550 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Austenite Austenitic stainless steel Carburizing Compressive properties Computer simulation Contact stresses Crack propagation Fatigue cracks Fatigue failure Fatigue life Fatigue tests Finite element method Fracture mechanics Grain boundaries Mathematical analysis Modelling Nickel chromium molybdenum steels Residual stress Retained austenite Rolling contact Rolling contact fatigue Steel Stress propagation Tessellation Two dimensional models Ultrasonic testing Voronoi Tessellation XFEM |
title | Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20effect%20of%20retained%20austenite%20and%20residual%20stress%20on%20rolling%20contact%20fatigue%20of%20carburized%20steel%20with%20XFEM%20and%20experimental%20approaches&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Ooi,%20George%20Theng%20Ching&rft.date=2018-08-08&rft.volume=732&rft.spage=311&rft.epage=319&rft.pages=311-319&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.06.078&rft_dat=%3Cproquest_cross%3E2114215550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114215550&rft_id=info:pmid/&rft_els_id=S0921509318308736&rfr_iscdi=true |