Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches

In this study, the effects of retained austenite (RA) and residual stress on rolling contact fatigue (RCF) of carburized AISI 8620 steel were investigated through modeling and experiments. In modeling, a two-dimensional finite element RCF model was developed to examine the crack propagation and fati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-08, Vol.732, p.311-319
Hauptverfasser: Ooi, George Theng Ching, Roy, Sougata, Sundararajan, Sriram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 319
container_issue
container_start_page 311
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 732
creator Ooi, George Theng Ching
Roy, Sougata
Sundararajan, Sriram
description In this study, the effects of retained austenite (RA) and residual stress on rolling contact fatigue (RCF) of carburized AISI 8620 steel were investigated through modeling and experiments. In modeling, a two-dimensional finite element RCF model was developed to examine the crack propagation and fatigue life of carburized AISI 8620 steel. An extended finite element method (XFEM) was used to initiate and propagate the cracks in the model. A Voronoi Tessellation was randomly generated to simulate the randomness of the microstructures in steel. The cracks were initiated on the grain boundaries of a Voronoi cell prior to the simulations at different locations in the RCF model. The RCF life of the samples was determined by rolling contact fatigue tests. The results in both simulations and experiments showed that the higher level of RA and compressive residual stress achieved improved RCF life through mitigation of crack propagation. The effect of increased RA led to significant improvement on RCF life as compared to increased in compressive residual stress.
doi_str_mv 10.1016/j.msea.2018.06.078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2114215550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318308736</els_id><sourcerecordid>2114215550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a5930637ce66ad7a36f840c18ddd80f2cb9771987e80a6793b090e703bb5cc7e3</originalsourceid><addsrcrecordid>eNp9kc9q3DAQh0VoINukL9CTIGc7I8uWbMilhM0fSOilgdyELI13tTjyVpK3bV4kr1u523NOGsR83wzzI-Qrg5IBE1e78jWiLitgbQmiBNmekBVrJS_qjotPZAVdxYoGOn5GPse4AwBWQ7Mi7w_-gDG5jU7Ob2jaIsVhQJPoNNCASTuPluo5JvQuIdXe5u_o7KxHGlMuI508DdM4LryZfNIZHrJuM-MiMTr0c3BvWZMlONJfLm3py-366Z8Mf-8xuFfM3Ej1fh8mbbYYL8jpoMeIX_6_5-T5dv3j5r54_H73cPPtsTBcVqnQTcdBcGlQCG2l5mJoazCstda2MFSm76RkXSuxBS1kx3voACXwvm-MkcjPyeXRmwf_nPMl1G6ag88jVcVYXbGmaSB3VccuE6YYAw5qn3fW4Y9ioJYA1E4tAaglAAVC5QAydH2EMO9_cBhUNA69QetCPrCyk_sI_wvnHZIW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114215550</pqid></control><display><type>article</type><title>Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ooi, George Theng Ching ; Roy, Sougata ; Sundararajan, Sriram</creator><creatorcontrib>Ooi, George Theng Ching ; Roy, Sougata ; Sundararajan, Sriram</creatorcontrib><description>In this study, the effects of retained austenite (RA) and residual stress on rolling contact fatigue (RCF) of carburized AISI 8620 steel were investigated through modeling and experiments. In modeling, a two-dimensional finite element RCF model was developed to examine the crack propagation and fatigue life of carburized AISI 8620 steel. An extended finite element method (XFEM) was used to initiate and propagate the cracks in the model. A Voronoi Tessellation was randomly generated to simulate the randomness of the microstructures in steel. The cracks were initiated on the grain boundaries of a Voronoi cell prior to the simulations at different locations in the RCF model. The RCF life of the samples was determined by rolling contact fatigue tests. The results in both simulations and experiments showed that the higher level of RA and compressive residual stress achieved improved RCF life through mitigation of crack propagation. The effect of increased RA led to significant improvement on RCF life as compared to increased in compressive residual stress.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.06.078</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Austenite ; Austenitic stainless steel ; Carburizing ; Compressive properties ; Computer simulation ; Contact stresses ; Crack propagation ; Fatigue cracks ; Fatigue failure ; Fatigue life ; Fatigue tests ; Finite element method ; Fracture mechanics ; Grain boundaries ; Mathematical analysis ; Modelling ; Nickel chromium molybdenum steels ; Residual stress ; Retained austenite ; Rolling contact ; Rolling contact fatigue ; Steel ; Stress propagation ; Tessellation ; Two dimensional models ; Ultrasonic testing ; Voronoi Tessellation ; XFEM</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2018-08, Vol.732, p.311-319</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 8, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a5930637ce66ad7a36f840c18ddd80f2cb9771987e80a6793b090e703bb5cc7e3</citedby><cites>FETCH-LOGICAL-c372t-a5930637ce66ad7a36f840c18ddd80f2cb9771987e80a6793b090e703bb5cc7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2018.06.078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Ooi, George Theng Ching</creatorcontrib><creatorcontrib>Roy, Sougata</creatorcontrib><creatorcontrib>Sundararajan, Sriram</creatorcontrib><title>Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>In this study, the effects of retained austenite (RA) and residual stress on rolling contact fatigue (RCF) of carburized AISI 8620 steel were investigated through modeling and experiments. In modeling, a two-dimensional finite element RCF model was developed to examine the crack propagation and fatigue life of carburized AISI 8620 steel. An extended finite element method (XFEM) was used to initiate and propagate the cracks in the model. A Voronoi Tessellation was randomly generated to simulate the randomness of the microstructures in steel. The cracks were initiated on the grain boundaries of a Voronoi cell prior to the simulations at different locations in the RCF model. The RCF life of the samples was determined by rolling contact fatigue tests. The results in both simulations and experiments showed that the higher level of RA and compressive residual stress achieved improved RCF life through mitigation of crack propagation. The effect of increased RA led to significant improvement on RCF life as compared to increased in compressive residual stress.</description><subject>Austenite</subject><subject>Austenitic stainless steel</subject><subject>Carburizing</subject><subject>Compressive properties</subject><subject>Computer simulation</subject><subject>Contact stresses</subject><subject>Crack propagation</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Grain boundaries</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><subject>Nickel chromium molybdenum steels</subject><subject>Residual stress</subject><subject>Retained austenite</subject><subject>Rolling contact</subject><subject>Rolling contact fatigue</subject><subject>Steel</subject><subject>Stress propagation</subject><subject>Tessellation</subject><subject>Two dimensional models</subject><subject>Ultrasonic testing</subject><subject>Voronoi Tessellation</subject><subject>XFEM</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc9q3DAQh0VoINukL9CTIGc7I8uWbMilhM0fSOilgdyELI13tTjyVpK3bV4kr1u523NOGsR83wzzI-Qrg5IBE1e78jWiLitgbQmiBNmekBVrJS_qjotPZAVdxYoGOn5GPse4AwBWQ7Mi7w_-gDG5jU7Ob2jaIsVhQJPoNNCASTuPluo5JvQuIdXe5u_o7KxHGlMuI508DdM4LryZfNIZHrJuM-MiMTr0c3BvWZMlONJfLm3py-366Z8Mf-8xuFfM3Ej1fh8mbbYYL8jpoMeIX_6_5-T5dv3j5r54_H73cPPtsTBcVqnQTcdBcGlQCG2l5mJoazCstda2MFSm76RkXSuxBS1kx3voACXwvm-MkcjPyeXRmwf_nPMl1G6ag88jVcVYXbGmaSB3VccuE6YYAw5qn3fW4Y9ioJYA1E4tAaglAAVC5QAydH2EMO9_cBhUNA69QetCPrCyk_sI_wvnHZIW</recordid><startdate>20180808</startdate><enddate>20180808</enddate><creator>Ooi, George Theng Ching</creator><creator>Roy, Sougata</creator><creator>Sundararajan, Sriram</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180808</creationdate><title>Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches</title><author>Ooi, George Theng Ching ; Roy, Sougata ; Sundararajan, Sriram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a5930637ce66ad7a36f840c18ddd80f2cb9771987e80a6793b090e703bb5cc7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Austenite</topic><topic>Austenitic stainless steel</topic><topic>Carburizing</topic><topic>Compressive properties</topic><topic>Computer simulation</topic><topic>Contact stresses</topic><topic>Crack propagation</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Grain boundaries</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><topic>Nickel chromium molybdenum steels</topic><topic>Residual stress</topic><topic>Retained austenite</topic><topic>Rolling contact</topic><topic>Rolling contact fatigue</topic><topic>Steel</topic><topic>Stress propagation</topic><topic>Tessellation</topic><topic>Two dimensional models</topic><topic>Ultrasonic testing</topic><topic>Voronoi Tessellation</topic><topic>XFEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ooi, George Theng Ching</creatorcontrib><creatorcontrib>Roy, Sougata</creatorcontrib><creatorcontrib>Sundararajan, Sriram</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ooi, George Theng Ching</au><au>Roy, Sougata</au><au>Sundararajan, Sriram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2018-08-08</date><risdate>2018</risdate><volume>732</volume><spage>311</spage><epage>319</epage><pages>311-319</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>In this study, the effects of retained austenite (RA) and residual stress on rolling contact fatigue (RCF) of carburized AISI 8620 steel were investigated through modeling and experiments. In modeling, a two-dimensional finite element RCF model was developed to examine the crack propagation and fatigue life of carburized AISI 8620 steel. An extended finite element method (XFEM) was used to initiate and propagate the cracks in the model. A Voronoi Tessellation was randomly generated to simulate the randomness of the microstructures in steel. The cracks were initiated on the grain boundaries of a Voronoi cell prior to the simulations at different locations in the RCF model. The RCF life of the samples was determined by rolling contact fatigue tests. The results in both simulations and experiments showed that the higher level of RA and compressive residual stress achieved improved RCF life through mitigation of crack propagation. The effect of increased RA led to significant improvement on RCF life as compared to increased in compressive residual stress.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.06.078</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-08, Vol.732, p.311-319
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2114215550
source ScienceDirect Journals (5 years ago - present)
subjects Austenite
Austenitic stainless steel
Carburizing
Compressive properties
Computer simulation
Contact stresses
Crack propagation
Fatigue cracks
Fatigue failure
Fatigue life
Fatigue tests
Finite element method
Fracture mechanics
Grain boundaries
Mathematical analysis
Modelling
Nickel chromium molybdenum steels
Residual stress
Retained austenite
Rolling contact
Rolling contact fatigue
Steel
Stress propagation
Tessellation
Two dimensional models
Ultrasonic testing
Voronoi Tessellation
XFEM
title Investigating the effect of retained austenite and residual stress on rolling contact fatigue of carburized steel with XFEM and experimental approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20effect%20of%20retained%20austenite%20and%20residual%20stress%20on%20rolling%20contact%20fatigue%20of%20carburized%20steel%20with%20XFEM%20and%20experimental%20approaches&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Ooi,%20George%20Theng%20Ching&rft.date=2018-08-08&rft.volume=732&rft.spage=311&rft.epage=319&rft.pages=311-319&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.06.078&rft_dat=%3Cproquest_cross%3E2114215550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114215550&rft_id=info:pmid/&rft_els_id=S0921509318308736&rfr_iscdi=true