Nano-structured platinum group metal-free catalysts and their integration in fuel cell electrode architectures

[Display omitted] •Platinum group metal-free catalysts.•Oxygen Reduction Reaction.•Membrane Electrode Assembly.•X-ray computed tomography. The novel platinum group metal-free (PGM-free) catalyst for the oxygen reduction reaction (ORR) is synthesized by a modified sacrificial support method (SSM). Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2018-12, Vol.237, p.1139-1147
Hauptverfasser: Serov, Alexey, Shum, Andrew D., Xiao, Xianghui, De Andrade, Vincent, Artyushkova, Kateryna, Zenyuk, Iryna V., Atanassov, Plamen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1147
container_issue
container_start_page 1139
container_title Applied catalysis. B, Environmental
container_volume 237
creator Serov, Alexey
Shum, Andrew D.
Xiao, Xianghui
De Andrade, Vincent
Artyushkova, Kateryna
Zenyuk, Iryna V.
Atanassov, Plamen
description [Display omitted] •Platinum group metal-free catalysts.•Oxygen Reduction Reaction.•Membrane Electrode Assembly.•X-ray computed tomography. The novel platinum group metal-free (PGM-free) catalyst for the oxygen reduction reaction (ORR) is synthesized by a modified sacrificial support method (SSM). The catalyst chemical/surface composition is studied by X-ray photoelectron spectroscopy, and the morphology of the material is observed using both HR-SEM and HR-TEM, demonstrating the open-frame, self-supported catalysts. This new catalyst’s electrochemical performance is evaluated by polarization curves and has behaviour comparable to the state-of-the-art PGM-free catalysts. Meso-structure imaging shows pores on the order of 100nm, the mean size of the individual silica particles in the sacrificial support. For the first time, PGM-free catalyst layer (CL) morphology in a membrane electrode assembly (MEA) is studied in detail by combined nano- and micro X-ray computed tomography (CT) and interpretational modelling. The highly inhomogeneous, high-tortuosity, through-thickness structure of the CL is observed with micro-CT. The nano-CT method for these thick PGM-free electrodes is not sufficient to capture the full through-thickness morphology of these electrodes. Water retention curves suggest water pooling at the MEA components’ interfaces and significant dependence of capilary pressure and saturation on through-thickness location. This study is the first of its kind to identify morphology-dependent transport losses in the thick PGM-free electrodes using scale-bridging between meso-, micro-, and macro.
doi_str_mv 10.1016/j.apcatb.2017.08.067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2114209969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337317308032</els_id><sourcerecordid>2114209969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-2b80ec100be84035ac8477f57e87029a9613078743caadcefd58299bad51b2a93</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOF7ewEXAdetJ0jbpRpDBGwy60XVI09OZlE5bk1SYt7djXbs6Z_Ff-D9CbhikDFhx16ZmtCZWKQcmU1ApFPKErJiSIhFKiVOygpIXiRBSnJOLEFoA4IKrFenfTD8kIfrJxsljTcfORNdPe7r1wzTSPUbTJY1HpHOD6Q4hBmr6msYdOk9dH3HrZ8fQzz9tJuyoxa6j2KGNfqiRGm93LuJvfLgiZ43pAl7_3Uvy-fT4sX5JNu_Pr-uHTWIzJmPCKwVoGUCFKgORG6syKZtcopLAS1MWTIBUMhPWmNpiU-eKl2Vl6pxV3JTiktwuuaMfviYMUbfD5Pu5UnPGMg5lWRxV2aKyfgjBY6NH7_bGHzQDfSSrW72Q1UeyGpSeyc62-8WG84Jvh14H67C3WDs_79T14P4P-AF9CoWp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114209969</pqid></control><display><type>article</type><title>Nano-structured platinum group metal-free catalysts and their integration in fuel cell electrode architectures</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Serov, Alexey ; Shum, Andrew D. ; Xiao, Xianghui ; De Andrade, Vincent ; Artyushkova, Kateryna ; Zenyuk, Iryna V. ; Atanassov, Plamen</creator><creatorcontrib>Serov, Alexey ; Shum, Andrew D. ; Xiao, Xianghui ; De Andrade, Vincent ; Artyushkova, Kateryna ; Zenyuk, Iryna V. ; Atanassov, Plamen</creatorcontrib><description>[Display omitted] •Platinum group metal-free catalysts.•Oxygen Reduction Reaction.•Membrane Electrode Assembly.•X-ray computed tomography. The novel platinum group metal-free (PGM-free) catalyst for the oxygen reduction reaction (ORR) is synthesized by a modified sacrificial support method (SSM). The catalyst chemical/surface composition is studied by X-ray photoelectron spectroscopy, and the morphology of the material is observed using both HR-SEM and HR-TEM, demonstrating the open-frame, self-supported catalysts. This new catalyst’s electrochemical performance is evaluated by polarization curves and has behaviour comparable to the state-of-the-art PGM-free catalysts. Meso-structure imaging shows pores on the order of 100nm, the mean size of the individual silica particles in the sacrificial support. For the first time, PGM-free catalyst layer (CL) morphology in a membrane electrode assembly (MEA) is studied in detail by combined nano- and micro X-ray computed tomography (CT) and interpretational modelling. The highly inhomogeneous, high-tortuosity, through-thickness structure of the CL is observed with micro-CT. The nano-CT method for these thick PGM-free electrodes is not sufficient to capture the full through-thickness morphology of these electrodes. Water retention curves suggest water pooling at the MEA components’ interfaces and significant dependence of capilary pressure and saturation on through-thickness location. This study is the first of its kind to identify morphology-dependent transport losses in the thick PGM-free electrodes using scale-bridging between meso-, micro-, and macro.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2017.08.067</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalysis ; Catalysts ; Chemical composition ; Chemical reduction ; Chemical synthesis ; Computed tomography ; Electrochemical analysis ; Electrochemistry ; Electrode polarization ; Electrodes ; Fuel cells ; Fuel technology ; Interfaces ; Medical imaging ; Metals ; Morphology ; Nanostructured materials ; Organic chemistry ; Oxygen reduction reactions ; Photoelectron spectroscopy ; Platinum ; Platinum group metal-free catalysts ; Platinum metals ; Pressure dependence ; Silica ; Silicon dioxide ; Thickness ; Tortuosity ; Water management ; X-ray computed tomography</subject><ispartof>Applied catalysis. B, Environmental, 2018-12, Vol.237, p.1139-1147</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 5, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-2b80ec100be84035ac8477f57e87029a9613078743caadcefd58299bad51b2a93</citedby><cites>FETCH-LOGICAL-c417t-2b80ec100be84035ac8477f57e87029a9613078743caadcefd58299bad51b2a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2017.08.067$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Serov, Alexey</creatorcontrib><creatorcontrib>Shum, Andrew D.</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>De Andrade, Vincent</creatorcontrib><creatorcontrib>Artyushkova, Kateryna</creatorcontrib><creatorcontrib>Zenyuk, Iryna V.</creatorcontrib><creatorcontrib>Atanassov, Plamen</creatorcontrib><title>Nano-structured platinum group metal-free catalysts and their integration in fuel cell electrode architectures</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Platinum group metal-free catalysts.•Oxygen Reduction Reaction.•Membrane Electrode Assembly.•X-ray computed tomography. The novel platinum group metal-free (PGM-free) catalyst for the oxygen reduction reaction (ORR) is synthesized by a modified sacrificial support method (SSM). The catalyst chemical/surface composition is studied by X-ray photoelectron spectroscopy, and the morphology of the material is observed using both HR-SEM and HR-TEM, demonstrating the open-frame, self-supported catalysts. This new catalyst’s electrochemical performance is evaluated by polarization curves and has behaviour comparable to the state-of-the-art PGM-free catalysts. Meso-structure imaging shows pores on the order of 100nm, the mean size of the individual silica particles in the sacrificial support. For the first time, PGM-free catalyst layer (CL) morphology in a membrane electrode assembly (MEA) is studied in detail by combined nano- and micro X-ray computed tomography (CT) and interpretational modelling. The highly inhomogeneous, high-tortuosity, through-thickness structure of the CL is observed with micro-CT. The nano-CT method for these thick PGM-free electrodes is not sufficient to capture the full through-thickness morphology of these electrodes. Water retention curves suggest water pooling at the MEA components’ interfaces and significant dependence of capilary pressure and saturation on through-thickness location. This study is the first of its kind to identify morphology-dependent transport losses in the thick PGM-free electrodes using scale-bridging between meso-, micro-, and macro.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical composition</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Computed tomography</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Interfaces</subject><subject>Medical imaging</subject><subject>Metals</subject><subject>Morphology</subject><subject>Nanostructured materials</subject><subject>Organic chemistry</subject><subject>Oxygen reduction reactions</subject><subject>Photoelectron spectroscopy</subject><subject>Platinum</subject><subject>Platinum group metal-free catalysts</subject><subject>Platinum metals</subject><subject>Pressure dependence</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Thickness</subject><subject>Tortuosity</subject><subject>Water management</subject><subject>X-ray computed tomography</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOF7ewEXAdetJ0jbpRpDBGwy60XVI09OZlE5bk1SYt7djXbs6Z_Ff-D9CbhikDFhx16ZmtCZWKQcmU1ApFPKErJiSIhFKiVOygpIXiRBSnJOLEFoA4IKrFenfTD8kIfrJxsljTcfORNdPe7r1wzTSPUbTJY1HpHOD6Q4hBmr6msYdOk9dH3HrZ8fQzz9tJuyoxa6j2KGNfqiRGm93LuJvfLgiZ43pAl7_3Uvy-fT4sX5JNu_Pr-uHTWIzJmPCKwVoGUCFKgORG6syKZtcopLAS1MWTIBUMhPWmNpiU-eKl2Vl6pxV3JTiktwuuaMfviYMUbfD5Pu5UnPGMg5lWRxV2aKyfgjBY6NH7_bGHzQDfSSrW72Q1UeyGpSeyc62-8WG84Jvh14H67C3WDs_79T14P4P-AF9CoWp</recordid><startdate>20181205</startdate><enddate>20181205</enddate><creator>Serov, Alexey</creator><creator>Shum, Andrew D.</creator><creator>Xiao, Xianghui</creator><creator>De Andrade, Vincent</creator><creator>Artyushkova, Kateryna</creator><creator>Zenyuk, Iryna V.</creator><creator>Atanassov, Plamen</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20181205</creationdate><title>Nano-structured platinum group metal-free catalysts and their integration in fuel cell electrode architectures</title><author>Serov, Alexey ; Shum, Andrew D. ; Xiao, Xianghui ; De Andrade, Vincent ; Artyushkova, Kateryna ; Zenyuk, Iryna V. ; Atanassov, Plamen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-2b80ec100be84035ac8477f57e87029a9613078743caadcefd58299bad51b2a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical composition</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Computed tomography</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Interfaces</topic><topic>Medical imaging</topic><topic>Metals</topic><topic>Morphology</topic><topic>Nanostructured materials</topic><topic>Organic chemistry</topic><topic>Oxygen reduction reactions</topic><topic>Photoelectron spectroscopy</topic><topic>Platinum</topic><topic>Platinum group metal-free catalysts</topic><topic>Platinum metals</topic><topic>Pressure dependence</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Thickness</topic><topic>Tortuosity</topic><topic>Water management</topic><topic>X-ray computed tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serov, Alexey</creatorcontrib><creatorcontrib>Shum, Andrew D.</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>De Andrade, Vincent</creatorcontrib><creatorcontrib>Artyushkova, Kateryna</creatorcontrib><creatorcontrib>Zenyuk, Iryna V.</creatorcontrib><creatorcontrib>Atanassov, Plamen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serov, Alexey</au><au>Shum, Andrew D.</au><au>Xiao, Xianghui</au><au>De Andrade, Vincent</au><au>Artyushkova, Kateryna</au><au>Zenyuk, Iryna V.</au><au>Atanassov, Plamen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-structured platinum group metal-free catalysts and their integration in fuel cell electrode architectures</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2018-12-05</date><risdate>2018</risdate><volume>237</volume><spage>1139</spage><epage>1147</epage><pages>1139-1147</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Platinum group metal-free catalysts.•Oxygen Reduction Reaction.•Membrane Electrode Assembly.•X-ray computed tomography. The novel platinum group metal-free (PGM-free) catalyst for the oxygen reduction reaction (ORR) is synthesized by a modified sacrificial support method (SSM). The catalyst chemical/surface composition is studied by X-ray photoelectron spectroscopy, and the morphology of the material is observed using both HR-SEM and HR-TEM, demonstrating the open-frame, self-supported catalysts. This new catalyst’s electrochemical performance is evaluated by polarization curves and has behaviour comparable to the state-of-the-art PGM-free catalysts. Meso-structure imaging shows pores on the order of 100nm, the mean size of the individual silica particles in the sacrificial support. For the first time, PGM-free catalyst layer (CL) morphology in a membrane electrode assembly (MEA) is studied in detail by combined nano- and micro X-ray computed tomography (CT) and interpretational modelling. The highly inhomogeneous, high-tortuosity, through-thickness structure of the CL is observed with micro-CT. The nano-CT method for these thick PGM-free electrodes is not sufficient to capture the full through-thickness morphology of these electrodes. Water retention curves suggest water pooling at the MEA components’ interfaces and significant dependence of capilary pressure and saturation on through-thickness location. This study is the first of its kind to identify morphology-dependent transport losses in the thick PGM-free electrodes using scale-bridging between meso-, micro-, and macro.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2017.08.067</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2018-12, Vol.237, p.1139-1147
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2114209969
source ScienceDirect Journals (5 years ago - present)
subjects Catalysis
Catalysts
Chemical composition
Chemical reduction
Chemical synthesis
Computed tomography
Electrochemical analysis
Electrochemistry
Electrode polarization
Electrodes
Fuel cells
Fuel technology
Interfaces
Medical imaging
Metals
Morphology
Nanostructured materials
Organic chemistry
Oxygen reduction reactions
Photoelectron spectroscopy
Platinum
Platinum group metal-free catalysts
Platinum metals
Pressure dependence
Silica
Silicon dioxide
Thickness
Tortuosity
Water management
X-ray computed tomography
title Nano-structured platinum group metal-free catalysts and their integration in fuel cell electrode architectures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-structured%20platinum%20group%20metal-free%20catalysts%20and%20their%20integration%20in%20fuel%20cell%20electrode%20architectures&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Serov,%20Alexey&rft.date=2018-12-05&rft.volume=237&rft.spage=1139&rft.epage=1147&rft.pages=1139-1147&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2017.08.067&rft_dat=%3Cproquest_cross%3E2114209969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114209969&rft_id=info:pmid/&rft_els_id=S0926337317308032&rfr_iscdi=true