Traffic prediction methods for quality improvement of adaptive video

During the past years, adaptive video based on HTTP has become very popular. Streaming of the adaptive video relies heavily on an estimation of end-to-end network throughput, which can be challenging especially in mobile networks, where the capacity highly fluctuates. In this work, we propose to pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia systems 2018-10, Vol.24 (5), p.531-547
1. Verfasser: Biernacki, Arkadiusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue 5
container_start_page 531
container_title Multimedia systems
container_volume 24
creator Biernacki, Arkadiusz
description During the past years, adaptive video based on HTTP has become very popular. Streaming of the adaptive video relies heavily on an estimation of end-to-end network throughput, which can be challenging especially in mobile networks, where the capacity highly fluctuates. In this work, we propose to predict the network throughput using its past measurements. As the analysis shows, the network throughput forms a long range-dependent process; thus, for the throughput prediction, we apply a fractional ARIMA process and artificial neural networks. Our approach does not require any modifications to the network infrastructure or the TCP stack. The predictions are performed for data traces obtained from measurements of throughput of a real mobile network. As the experiment shows, the obtained traffic models are able to enhance the performance of an adaptive streaming algorithm. Compared to the throughput predictors employed in contemporary systems dedicated to adaptive video streaming, the proposed technique obtains better results when taking into account effectiveness of network capacity utilisation and stability of video play-out.
doi_str_mv 10.1007/s00530-017-0574-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2113612530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2113612530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-13c154364c57d3926423d215182b27e3ad1cf84dabb5c68e410318f2e5076573</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AdTQ3j3kspWoVCm66D2kemtKZTJNpof_elBFcubqb75xz-RC6B_oIlNZPmVLJKaFQEyprQeQFmoHgjEDTsEs0o61gRLQVu0Y3OW9pAStOZ-hlnbT3weAhORvMGGKPOzd-R5uxjwnvD3oXxhMO3ZDi0XWuH3H0WFs9jOHo8DFYF2_Rlde77O5-7xyt317Xi3ey-lx-LJ5XxHDZjgS4ASl4JYysLW9ZJRi3DCQ0bMNqx7UF4xth9WYjTdU4AZRD45mTtK5kzefoYaotr-wPLo9qGw-pL4uKAfAKWFFQKJgok2LOyXk1pNDpdFJA1dmVmlypokCdXSlZMmzK5ML2Xy79Nf8f-gESKGrr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2113612530</pqid></control><display><type>article</type><title>Traffic prediction methods for quality improvement of adaptive video</title><source>Springer Nature - Complete Springer Journals</source><creator>Biernacki, Arkadiusz</creator><creatorcontrib>Biernacki, Arkadiusz</creatorcontrib><description>During the past years, adaptive video based on HTTP has become very popular. Streaming of the adaptive video relies heavily on an estimation of end-to-end network throughput, which can be challenging especially in mobile networks, where the capacity highly fluctuates. In this work, we propose to predict the network throughput using its past measurements. As the analysis shows, the network throughput forms a long range-dependent process; thus, for the throughput prediction, we apply a fractional ARIMA process and artificial neural networks. Our approach does not require any modifications to the network infrastructure or the TCP stack. The predictions are performed for data traces obtained from measurements of throughput of a real mobile network. As the experiment shows, the obtained traffic models are able to enhance the performance of an adaptive streaming algorithm. Compared to the throughput predictors employed in contemporary systems dedicated to adaptive video streaming, the proposed technique obtains better results when taking into account effectiveness of network capacity utilisation and stability of video play-out.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-017-0574-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive algorithms ; Adaptive systems ; Artificial neural networks ; Computer Communication Networks ; Computer Graphics ; Computer Science ; Cryptology ; Data Storage Representation ; Neural networks ; Operating Systems ; Regular Paper ; Traffic models ; Video transmission ; Wireless networks</subject><ispartof>Multimedia systems, 2018-10, Vol.24 (5), p.531-547</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-13c154364c57d3926423d215182b27e3ad1cf84dabb5c68e410318f2e5076573</citedby><cites>FETCH-LOGICAL-c359t-13c154364c57d3926423d215182b27e3ad1cf84dabb5c68e410318f2e5076573</cites><orcidid>0000-0002-5274-4250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-017-0574-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-017-0574-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Biernacki, Arkadiusz</creatorcontrib><title>Traffic prediction methods for quality improvement of adaptive video</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>During the past years, adaptive video based on HTTP has become very popular. Streaming of the adaptive video relies heavily on an estimation of end-to-end network throughput, which can be challenging especially in mobile networks, where the capacity highly fluctuates. In this work, we propose to predict the network throughput using its past measurements. As the analysis shows, the network throughput forms a long range-dependent process; thus, for the throughput prediction, we apply a fractional ARIMA process and artificial neural networks. Our approach does not require any modifications to the network infrastructure or the TCP stack. The predictions are performed for data traces obtained from measurements of throughput of a real mobile network. As the experiment shows, the obtained traffic models are able to enhance the performance of an adaptive streaming algorithm. Compared to the throughput predictors employed in contemporary systems dedicated to adaptive video streaming, the proposed technique obtains better results when taking into account effectiveness of network capacity utilisation and stability of video play-out.</description><subject>Adaptive algorithms</subject><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Neural networks</subject><subject>Operating Systems</subject><subject>Regular Paper</subject><subject>Traffic models</subject><subject>Video transmission</subject><subject>Wireless networks</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AdTQ3j3kspWoVCm66D2kemtKZTJNpof_elBFcubqb75xz-RC6B_oIlNZPmVLJKaFQEyprQeQFmoHgjEDTsEs0o61gRLQVu0Y3OW9pAStOZ-hlnbT3weAhORvMGGKPOzd-R5uxjwnvD3oXxhMO3ZDi0XWuH3H0WFs9jOHo8DFYF2_Rlde77O5-7xyt317Xi3ey-lx-LJ5XxHDZjgS4ASl4JYysLW9ZJRi3DCQ0bMNqx7UF4xth9WYjTdU4AZRD45mTtK5kzefoYaotr-wPLo9qGw-pL4uKAfAKWFFQKJgok2LOyXk1pNDpdFJA1dmVmlypokCdXSlZMmzK5ML2Xy79Nf8f-gESKGrr</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Biernacki, Arkadiusz</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5274-4250</orcidid></search><sort><creationdate>20181001</creationdate><title>Traffic prediction methods for quality improvement of adaptive video</title><author>Biernacki, Arkadiusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-13c154364c57d3926423d215182b27e3ad1cf84dabb5c68e410318f2e5076573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Neural networks</topic><topic>Operating Systems</topic><topic>Regular Paper</topic><topic>Traffic models</topic><topic>Video transmission</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biernacki, Arkadiusz</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biernacki, Arkadiusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic prediction methods for quality improvement of adaptive video</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>24</volume><issue>5</issue><spage>531</spage><epage>547</epage><pages>531-547</pages><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>During the past years, adaptive video based on HTTP has become very popular. Streaming of the adaptive video relies heavily on an estimation of end-to-end network throughput, which can be challenging especially in mobile networks, where the capacity highly fluctuates. In this work, we propose to predict the network throughput using its past measurements. As the analysis shows, the network throughput forms a long range-dependent process; thus, for the throughput prediction, we apply a fractional ARIMA process and artificial neural networks. Our approach does not require any modifications to the network infrastructure or the TCP stack. The predictions are performed for data traces obtained from measurements of throughput of a real mobile network. As the experiment shows, the obtained traffic models are able to enhance the performance of an adaptive streaming algorithm. Compared to the throughput predictors employed in contemporary systems dedicated to adaptive video streaming, the proposed technique obtains better results when taking into account effectiveness of network capacity utilisation and stability of video play-out.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-017-0574-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5274-4250</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0942-4962
ispartof Multimedia systems, 2018-10, Vol.24 (5), p.531-547
issn 0942-4962
1432-1882
language eng
recordid cdi_proquest_journals_2113612530
source Springer Nature - Complete Springer Journals
subjects Adaptive algorithms
Adaptive systems
Artificial neural networks
Computer Communication Networks
Computer Graphics
Computer Science
Cryptology
Data Storage Representation
Neural networks
Operating Systems
Regular Paper
Traffic models
Video transmission
Wireless networks
title Traffic prediction methods for quality improvement of adaptive video
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic%20prediction%20methods%20for%20quality%20improvement%20of%20adaptive%20video&rft.jtitle=Multimedia%20systems&rft.au=Biernacki,%20Arkadiusz&rft.date=2018-10-01&rft.volume=24&rft.issue=5&rft.spage=531&rft.epage=547&rft.pages=531-547&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-017-0574-5&rft_dat=%3Cproquest_cross%3E2113612530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2113612530&rft_id=info:pmid/&rfr_iscdi=true