Improvement of the condensation heat transfer model of the MARS-KS1.3 code using a modified diffusion layer model

The thermal-hydraulic system code, MARS-KS1.3, tends to underestimate the condensation heat transfer under the presence of non-condensable gases. To improve its condensation heat transfer model, we adopted the Herranz's diffusion layer model and further developed it, mainly focusing on thermal-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in nuclear energy (New series) 2018-09, Vol.108, p.260-269
Hauptverfasser: Lee, Jun-Yeob, Jeong, Jae Jun, Kang, Jin-Hoon, Yun, Byongjo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue
container_start_page 260
container_title Progress in nuclear energy (New series)
container_volume 108
creator Lee, Jun-Yeob
Jeong, Jae Jun
Kang, Jin-Hoon
Yun, Byongjo
description The thermal-hydraulic system code, MARS-KS1.3, tends to underestimate the condensation heat transfer under the presence of non-condensable gases. To improve its condensation heat transfer model, we adopted the Herranz's diffusion layer model and further developed it, mainly focusing on thermal-hydraulic conditions in a nuclear containment during a hypothetical accident. Two key modifications include (i) the correlations to calculate heat and mass transfer on a vertical external surface for various flow conditions are adopted and (ii) a turbulent diffusion coefficient is applied to consider the effect of turbulence on mass diffusion. The modified diffusion layer model was implemented into MARS-KS1.3 and it has been validated using 157 condensation experiments from six different facilities. By using the turbulent diffusion coefficient in the modified diffusion layer model, the effect of turbulence on mass diffusion and then condensation was captured very well. For most cases, the results of the modified model are in a better agreement with the experimental data, resulting in a root-mean-square error of 21.3%. It is also shown that the modified diffusion layer model can predict local condensation heat transfer change along the condensation surface well. •MARS-KS1.3 under-predicts condensation in the presence of noncondensable gases.•The Herranz's diffusion layer model was adopted for the MARS code improvement.•We considered the effect of turbulence on mass diffusion through diffusion layer.•The results of the modified model show a better agreement with experimental data.
doi_str_mv 10.1016/j.pnucene.2018.06.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2113604561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0149197018301525</els_id><sourcerecordid>2113604561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f82cd0f60af831d7ec291fb7eb8cd30f3762d87168fb636fa43de50e7475f33d3</originalsourceid><addsrcrecordid>eNqFkEtLBDEQhIMouD5-ghDwPGP3ZCaZPYmIL1QEH-eQTTqaZTezJrOC_94sq2dPBU191VQxdoJQI6A8m9eruLYUqW4A-xpkDdDusAn2qq_apml32QSwnVY4VbDPDnKeA6DCrpuwz7vlKg1ftKQ48sHz8YO4HaKjmM0Yhsg_yIx8TCZmT4kvB0eLP9_jxfNLdf-CtSiII77OIb5zszEFH8jxIr4cS8rCfP_RR2zPm0Wm4189ZG_XV6-Xt9XD083d5cVDZYVQY-X7xjrwEozvBTpFtpminyma9dYJ8ELJxvUKZe9nUkhvWuGoA1Kt6rwQThyy021u6fe5pjzq-bBOsbzUDaKQ0HYSi6vbumwack7k9SqFpUnfGkFv1tVz_buu3qyrQeqybuHOtxyVCl-Bks42ULTkQiI7ajeEfxJ-AMgqhk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2113604561</pqid></control><display><type>article</type><title>Improvement of the condensation heat transfer model of the MARS-KS1.3 code using a modified diffusion layer model</title><source>Elsevier ScienceDirect Journals</source><creator>Lee, Jun-Yeob ; Jeong, Jae Jun ; Kang, Jin-Hoon ; Yun, Byongjo</creator><creatorcontrib>Lee, Jun-Yeob ; Jeong, Jae Jun ; Kang, Jin-Hoon ; Yun, Byongjo</creatorcontrib><description>The thermal-hydraulic system code, MARS-KS1.3, tends to underestimate the condensation heat transfer under the presence of non-condensable gases. To improve its condensation heat transfer model, we adopted the Herranz's diffusion layer model and further developed it, mainly focusing on thermal-hydraulic conditions in a nuclear containment during a hypothetical accident. Two key modifications include (i) the correlations to calculate heat and mass transfer on a vertical external surface for various flow conditions are adopted and (ii) a turbulent diffusion coefficient is applied to consider the effect of turbulence on mass diffusion. The modified diffusion layer model was implemented into MARS-KS1.3 and it has been validated using 157 condensation experiments from six different facilities. By using the turbulent diffusion coefficient in the modified diffusion layer model, the effect of turbulence on mass diffusion and then condensation was captured very well. For most cases, the results of the modified model are in a better agreement with the experimental data, resulting in a root-mean-square error of 21.3%. It is also shown that the modified diffusion layer model can predict local condensation heat transfer change along the condensation surface well. •MARS-KS1.3 under-predicts condensation in the presence of noncondensable gases.•The Herranz's diffusion layer model was adopted for the MARS code improvement.•We considered the effect of turbulence on mass diffusion through diffusion layer.•The results of the modified model show a better agreement with experimental data.</description><identifier>ISSN: 0149-1970</identifier><identifier>EISSN: 1878-4224</identifier><identifier>DOI: 10.1016/j.pnucene.2018.06.004</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computational fluid dynamics ; Condensation ; Condensation heat transfer model ; Containment ; Diffusion ; Diffusion coefficient ; Diffusion effects ; Diffusion layer model ; Diffusion layers ; Gases ; Heat transfer ; Hydraulic equipment ; Mass transfer ; Noncondensable gases ; Turbulence ; Turbulent diffusion ; Turbulent flow</subject><ispartof>Progress in nuclear energy (New series), 2018-09, Vol.108, p.260-269</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f82cd0f60af831d7ec291fb7eb8cd30f3762d87168fb636fa43de50e7475f33d3</citedby><cites>FETCH-LOGICAL-c337t-f82cd0f60af831d7ec291fb7eb8cd30f3762d87168fb636fa43de50e7475f33d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0149197018301525$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lee, Jun-Yeob</creatorcontrib><creatorcontrib>Jeong, Jae Jun</creatorcontrib><creatorcontrib>Kang, Jin-Hoon</creatorcontrib><creatorcontrib>Yun, Byongjo</creatorcontrib><title>Improvement of the condensation heat transfer model of the MARS-KS1.3 code using a modified diffusion layer model</title><title>Progress in nuclear energy (New series)</title><description>The thermal-hydraulic system code, MARS-KS1.3, tends to underestimate the condensation heat transfer under the presence of non-condensable gases. To improve its condensation heat transfer model, we adopted the Herranz's diffusion layer model and further developed it, mainly focusing on thermal-hydraulic conditions in a nuclear containment during a hypothetical accident. Two key modifications include (i) the correlations to calculate heat and mass transfer on a vertical external surface for various flow conditions are adopted and (ii) a turbulent diffusion coefficient is applied to consider the effect of turbulence on mass diffusion. The modified diffusion layer model was implemented into MARS-KS1.3 and it has been validated using 157 condensation experiments from six different facilities. By using the turbulent diffusion coefficient in the modified diffusion layer model, the effect of turbulence on mass diffusion and then condensation was captured very well. For most cases, the results of the modified model are in a better agreement with the experimental data, resulting in a root-mean-square error of 21.3%. It is also shown that the modified diffusion layer model can predict local condensation heat transfer change along the condensation surface well. •MARS-KS1.3 under-predicts condensation in the presence of noncondensable gases.•The Herranz's diffusion layer model was adopted for the MARS code improvement.•We considered the effect of turbulence on mass diffusion through diffusion layer.•The results of the modified model show a better agreement with experimental data.</description><subject>Computational fluid dynamics</subject><subject>Condensation</subject><subject>Condensation heat transfer model</subject><subject>Containment</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusion effects</subject><subject>Diffusion layer model</subject><subject>Diffusion layers</subject><subject>Gases</subject><subject>Heat transfer</subject><subject>Hydraulic equipment</subject><subject>Mass transfer</subject><subject>Noncondensable gases</subject><subject>Turbulence</subject><subject>Turbulent diffusion</subject><subject>Turbulent flow</subject><issn>0149-1970</issn><issn>1878-4224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLBDEQhIMouD5-ghDwPGP3ZCaZPYmIL1QEH-eQTTqaZTezJrOC_94sq2dPBU191VQxdoJQI6A8m9eruLYUqW4A-xpkDdDusAn2qq_apml32QSwnVY4VbDPDnKeA6DCrpuwz7vlKg1ftKQ48sHz8YO4HaKjmM0Yhsg_yIx8TCZmT4kvB0eLP9_jxfNLdf-CtSiII77OIb5zszEFH8jxIr4cS8rCfP_RR2zPm0Wm4189ZG_XV6-Xt9XD083d5cVDZYVQY-X7xjrwEozvBTpFtpminyma9dYJ8ELJxvUKZe9nUkhvWuGoA1Kt6rwQThyy021u6fe5pjzq-bBOsbzUDaKQ0HYSi6vbumwack7k9SqFpUnfGkFv1tVz_buu3qyrQeqybuHOtxyVCl-Bks42ULTkQiI7ajeEfxJ-AMgqhk4</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Lee, Jun-Yeob</creator><creator>Jeong, Jae Jun</creator><creator>Kang, Jin-Hoon</creator><creator>Yun, Byongjo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201809</creationdate><title>Improvement of the condensation heat transfer model of the MARS-KS1.3 code using a modified diffusion layer model</title><author>Lee, Jun-Yeob ; Jeong, Jae Jun ; Kang, Jin-Hoon ; Yun, Byongjo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f82cd0f60af831d7ec291fb7eb8cd30f3762d87168fb636fa43de50e7475f33d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational fluid dynamics</topic><topic>Condensation</topic><topic>Condensation heat transfer model</topic><topic>Containment</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusion effects</topic><topic>Diffusion layer model</topic><topic>Diffusion layers</topic><topic>Gases</topic><topic>Heat transfer</topic><topic>Hydraulic equipment</topic><topic>Mass transfer</topic><topic>Noncondensable gases</topic><topic>Turbulence</topic><topic>Turbulent diffusion</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jun-Yeob</creatorcontrib><creatorcontrib>Jeong, Jae Jun</creatorcontrib><creatorcontrib>Kang, Jin-Hoon</creatorcontrib><creatorcontrib>Yun, Byongjo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Progress in nuclear energy (New series)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jun-Yeob</au><au>Jeong, Jae Jun</au><au>Kang, Jin-Hoon</au><au>Yun, Byongjo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of the condensation heat transfer model of the MARS-KS1.3 code using a modified diffusion layer model</atitle><jtitle>Progress in nuclear energy (New series)</jtitle><date>2018-09</date><risdate>2018</risdate><volume>108</volume><spage>260</spage><epage>269</epage><pages>260-269</pages><issn>0149-1970</issn><eissn>1878-4224</eissn><abstract>The thermal-hydraulic system code, MARS-KS1.3, tends to underestimate the condensation heat transfer under the presence of non-condensable gases. To improve its condensation heat transfer model, we adopted the Herranz's diffusion layer model and further developed it, mainly focusing on thermal-hydraulic conditions in a nuclear containment during a hypothetical accident. Two key modifications include (i) the correlations to calculate heat and mass transfer on a vertical external surface for various flow conditions are adopted and (ii) a turbulent diffusion coefficient is applied to consider the effect of turbulence on mass diffusion. The modified diffusion layer model was implemented into MARS-KS1.3 and it has been validated using 157 condensation experiments from six different facilities. By using the turbulent diffusion coefficient in the modified diffusion layer model, the effect of turbulence on mass diffusion and then condensation was captured very well. For most cases, the results of the modified model are in a better agreement with the experimental data, resulting in a root-mean-square error of 21.3%. It is also shown that the modified diffusion layer model can predict local condensation heat transfer change along the condensation surface well. •MARS-KS1.3 under-predicts condensation in the presence of noncondensable gases.•The Herranz's diffusion layer model was adopted for the MARS code improvement.•We considered the effect of turbulence on mass diffusion through diffusion layer.•The results of the modified model show a better agreement with experimental data.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.pnucene.2018.06.004</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0149-1970
ispartof Progress in nuclear energy (New series), 2018-09, Vol.108, p.260-269
issn 0149-1970
1878-4224
language eng
recordid cdi_proquest_journals_2113604561
source Elsevier ScienceDirect Journals
subjects Computational fluid dynamics
Condensation
Condensation heat transfer model
Containment
Diffusion
Diffusion coefficient
Diffusion effects
Diffusion layer model
Diffusion layers
Gases
Heat transfer
Hydraulic equipment
Mass transfer
Noncondensable gases
Turbulence
Turbulent diffusion
Turbulent flow
title Improvement of the condensation heat transfer model of the MARS-KS1.3 code using a modified diffusion layer model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20the%20condensation%20heat%20transfer%20model%20of%20the%20MARS-KS1.3%20code%20using%20a%20modified%20diffusion%20layer%20model&rft.jtitle=Progress%20in%20nuclear%20energy%20(New%20series)&rft.au=Lee,%20Jun-Yeob&rft.date=2018-09&rft.volume=108&rft.spage=260&rft.epage=269&rft.pages=260-269&rft.issn=0149-1970&rft.eissn=1878-4224&rft_id=info:doi/10.1016/j.pnucene.2018.06.004&rft_dat=%3Cproquest_cross%3E2113604561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2113604561&rft_id=info:pmid/&rft_els_id=S0149197018301525&rfr_iscdi=true