POPULATION GENETIC ANALYSIS OF MOUNTAIN PLOVER USING MITOCHONDRIAL DNA SEQUENCE DATA
Mountain Plover (Charadrius montanus) distribution and abundance have been reduced drastically in the past 30 years and the conversion of shortgrass prairie to agriculture has caused breeding populations to become geographically isolated. This, coupled with the fact that Mountain Plovers are thought...
Gespeichert in:
Veröffentlicht in: | The Condor (Los Angeles, Calif.) Calif.), 2005-05, Vol.107 (2), p.353-362 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | 2 |
container_start_page | 353 |
container_title | The Condor (Los Angeles, Calif.) |
container_volume | 107 |
creator | Oyler-McCance, Sara J St. John, Judy Knopf, Fritz L Quinn, Tom W |
description | Mountain Plover (Charadrius montanus) distribution and abundance have been reduced drastically in the past 30 years and the conversion of shortgrass prairie to agriculture has caused breeding populations to become geographically isolated. This, coupled with the fact that Mountain Plovers are thought to show fidelity to breeding grounds, leads to the prediction that the isolated breeding populations would be genetically distinct. This pattern, if observed, would have important management implications for a species at risk of extinction. Our study examined genetic variation at two mitochondrial regions for 20–30 individuals from each of four breeding sites. We found no evidence of significant population differentiation in the data from the control region or the ATPase 6/8 region. Nested-clade analysis revealed no relationship between haplotype phylogeny, and geography among the 47 control region haplotypes. In the ATPase 6/8 region, however, one of the two clades provided information suggesting that, historically, there has been continuous range expansion. Analysis of mismatch distributions and Tajima's D suggest that the Mountain Plover underwent a population expansion, following the Pleistocene glacial period. To explain the lack of detectable genetic differentiation among populations, despite their geographic isolation and fidelity to breeding locations, we speculate that there is sufficient female-mediated gene flow to homogenize gene pools among populations. Such gene flow might ensue if pair bonds are formed in mixed flocks on wintering grounds rather than on the summer breeding grounds. Análisis Genéticos de Poblaciones de Charadrius montanus Usando Secuencias de ADN Mitocondrial Resumen. La distribución y la abundancia de Charadrius montanus se han reducido drásticamente desde hace 30 años y las poblaciones han quedado más aisladas geográficamente debido a la transformación de las praderas de pastos cortos a tierras agrícolas. Estos cambios, combinados con el hecho de que se cree que C. montanus presenta fidelidad a sus áreas de nidificación, sugieren que las poblaciones reproductivas aisladas podrían ser distintas genéticamente. De observarse este patrón, tendría consecuencias importantes para el manejo de esta especie en peligro de extinción. En nuestro estudio, investigamos el patrón de variación genética en dos regiones mitocondriales en 20–30 individuos de C. montanus provenientes de cuatro sitios de nidificación. No encontramos evidencia de dif |
doi_str_mv | 10.1650/7594 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_211302303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4096516</jstor_id><sourcerecordid>4096516</sourcerecordid><originalsourceid>FETCH-LOGICAL-b294t-1b8dfb997192367736e63eafb3721da80eedb3339ac1bea88832a4237fdca1283</originalsourceid><addsrcrecordid>eNpt0M1LwzAYBvAgCs7N_8BDEK_VfPQjOYYu2wJdMtdW8FTSNYUNXTXdDv73dkz04unlhR_PAw8AE4wecRyhpyTi4QUYYU5ZEGHCL8EIIYyCKCTkGtz0_Q4NPwnJCBQrsyozUSij4VxqWagUCi2y11zl0Mzg0pS6EErDVWZe5BqWudJzuFSFSRdGT9dKZHCqBczlcyl1KuFUFGICrlr71rvbnzsG5UwW6SLIzFylIgtqwsNDgGvWtDXnCeaExklCYxdTZ9uaJgQ3liHnmppSyu0G184yxiixIaFJ22wsJoyOwf0598N3n0fXH6pdd_T7obIiGFNEKKIDejijje_63ru2-vDbd-u_Koyq01zVaa6B3Z3Zrj90_teEiMcRjv-q6m3X7d3_Gd_bSWfK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211302303</pqid></control><display><type>article</type><title>POPULATION GENETIC ANALYSIS OF MOUNTAIN PLOVER USING MITOCHONDRIAL DNA SEQUENCE DATA</title><source>BioOne Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Free E- Journals</source><creator>Oyler-McCance, Sara J ; St. John, Judy ; Knopf, Fritz L ; Quinn, Tom W</creator><creatorcontrib>Oyler-McCance, Sara J ; St. John, Judy ; Knopf, Fritz L ; Quinn, Tom W</creatorcontrib><description>Mountain Plover (Charadrius montanus) distribution and abundance have been reduced drastically in the past 30 years and the conversion of shortgrass prairie to agriculture has caused breeding populations to become geographically isolated. This, coupled with the fact that Mountain Plovers are thought to show fidelity to breeding grounds, leads to the prediction that the isolated breeding populations would be genetically distinct. This pattern, if observed, would have important management implications for a species at risk of extinction. Our study examined genetic variation at two mitochondrial regions for 20–30 individuals from each of four breeding sites. We found no evidence of significant population differentiation in the data from the control region or the ATPase 6/8 region. Nested-clade analysis revealed no relationship between haplotype phylogeny, and geography among the 47 control region haplotypes. In the ATPase 6/8 region, however, one of the two clades provided information suggesting that, historically, there has been continuous range expansion. Analysis of mismatch distributions and Tajima's D suggest that the Mountain Plover underwent a population expansion, following the Pleistocene glacial period. To explain the lack of detectable genetic differentiation among populations, despite their geographic isolation and fidelity to breeding locations, we speculate that there is sufficient female-mediated gene flow to homogenize gene pools among populations. Such gene flow might ensue if pair bonds are formed in mixed flocks on wintering grounds rather than on the summer breeding grounds. Análisis Genéticos de Poblaciones de Charadrius montanus Usando Secuencias de ADN Mitocondrial Resumen. La distribución y la abundancia de Charadrius montanus se han reducido drásticamente desde hace 30 años y las poblaciones han quedado más aisladas geográficamente debido a la transformación de las praderas de pastos cortos a tierras agrícolas. Estos cambios, combinados con el hecho de que se cree que C. montanus presenta fidelidad a sus áreas de nidificación, sugieren que las poblaciones reproductivas aisladas podrían ser distintas genéticamente. De observarse este patrón, tendría consecuencias importantes para el manejo de esta especie en peligro de extinción. En nuestro estudio, investigamos el patrón de variación genética en dos regiones mitocondriales en 20–30 individuos de C. montanus provenientes de cuatro sitios de nidificación. No encontramos evidencia de diferencias poblacionales significativas en los datos de la región de control, ni en la región de ATPasa 6/ 8. Un análisis de clados anidados reveló que no hay ninguna relación entre haplotipos filogenia y geografía entre los 47 haplotipos de la región de control. Sin embargo, en la región ATPasa 6/8, uno de los dos clados proveyó información que sugiere que la especie ha aumentado históricamente su rango de distribución. Análisis de distribuciones “mismatch” y de la D de Tajima sugieren que la población se expandió después del período glacial del Pleistoceno. Para explicar la falta de diferenciación genética entre las poblaciones, a pesar de su aislamiento geográfico y de la fidelidad a sus sitios de nidificación, especulamos que el flujo de genes es controlado por las hembras de la población de tal modo que los acervos génicos son bastante homogéneos entre las poblaciones. Dicho flujo de genes podría ocurrir si se formaran las parejas en las bandadas mixtas en el invierno, no en el verano cuando están en sus áreas de nidificación.</description><identifier>ISSN: 0010-5422</identifier><identifier>EISSN: 1938-5129</identifier><identifier>EISSN: 2732-4621</identifier><identifier>DOI: 10.1650/7594</identifier><identifier>CODEN: CNDRAB</identifier><language>eng</language><publisher>Waco: Cooper Ornithological Society</publisher><subject>Animal populations ; Animal reproduction ; Birds ; Breeding ; Breeding sites ; Charadrius montanus ; Ecological genetics ; Evolutionary genetics ; FEATURE ARTICLES ; Gene flow ; Genetic diversity ; Genetic variation ; Geographic regions ; Geography ; Haplotypes ; Mitochondrial DNA ; Mountain Plover ; Ornithology ; Phylogeny ; Pleistocene ; Population differentiation ; Population genetics ; Population growth ; Species extinction</subject><ispartof>The Condor (Los Angeles, Calif.), 2005-05, Vol.107 (2), p.353-362</ispartof><rights>Cooper Ornithological Society</rights><rights>Copyright 2005 The Cooper Ornithological Society</rights><rights>Copyright Cooper Ornithological Society May 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b294t-1b8dfb997192367736e63eafb3721da80eedb3339ac1bea88832a4237fdca1283</citedby><cites>FETCH-LOGICAL-b294t-1b8dfb997192367736e63eafb3721da80eedb3339ac1bea88832a4237fdca1283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bioone.org/doi/pdf/10.1650/7594$$EPDF$$P50$$Gbioone$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4096516$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,26978,27924,27925,52363,58017,58250</link.rule.ids></links><search><creatorcontrib>Oyler-McCance, Sara J</creatorcontrib><creatorcontrib>St. John, Judy</creatorcontrib><creatorcontrib>Knopf, Fritz L</creatorcontrib><creatorcontrib>Quinn, Tom W</creatorcontrib><title>POPULATION GENETIC ANALYSIS OF MOUNTAIN PLOVER USING MITOCHONDRIAL DNA SEQUENCE DATA</title><title>The Condor (Los Angeles, Calif.)</title><description>Mountain Plover (Charadrius montanus) distribution and abundance have been reduced drastically in the past 30 years and the conversion of shortgrass prairie to agriculture has caused breeding populations to become geographically isolated. This, coupled with the fact that Mountain Plovers are thought to show fidelity to breeding grounds, leads to the prediction that the isolated breeding populations would be genetically distinct. This pattern, if observed, would have important management implications for a species at risk of extinction. Our study examined genetic variation at two mitochondrial regions for 20–30 individuals from each of four breeding sites. We found no evidence of significant population differentiation in the data from the control region or the ATPase 6/8 region. Nested-clade analysis revealed no relationship between haplotype phylogeny, and geography among the 47 control region haplotypes. In the ATPase 6/8 region, however, one of the two clades provided information suggesting that, historically, there has been continuous range expansion. Analysis of mismatch distributions and Tajima's D suggest that the Mountain Plover underwent a population expansion, following the Pleistocene glacial period. To explain the lack of detectable genetic differentiation among populations, despite their geographic isolation and fidelity to breeding locations, we speculate that there is sufficient female-mediated gene flow to homogenize gene pools among populations. Such gene flow might ensue if pair bonds are formed in mixed flocks on wintering grounds rather than on the summer breeding grounds. Análisis Genéticos de Poblaciones de Charadrius montanus Usando Secuencias de ADN Mitocondrial Resumen. La distribución y la abundancia de Charadrius montanus se han reducido drásticamente desde hace 30 años y las poblaciones han quedado más aisladas geográficamente debido a la transformación de las praderas de pastos cortos a tierras agrícolas. Estos cambios, combinados con el hecho de que se cree que C. montanus presenta fidelidad a sus áreas de nidificación, sugieren que las poblaciones reproductivas aisladas podrían ser distintas genéticamente. De observarse este patrón, tendría consecuencias importantes para el manejo de esta especie en peligro de extinción. En nuestro estudio, investigamos el patrón de variación genética en dos regiones mitocondriales en 20–30 individuos de C. montanus provenientes de cuatro sitios de nidificación. No encontramos evidencia de diferencias poblacionales significativas en los datos de la región de control, ni en la región de ATPasa 6/ 8. Un análisis de clados anidados reveló que no hay ninguna relación entre haplotipos filogenia y geografía entre los 47 haplotipos de la región de control. Sin embargo, en la región ATPasa 6/8, uno de los dos clados proveyó información que sugiere que la especie ha aumentado históricamente su rango de distribución. Análisis de distribuciones “mismatch” y de la D de Tajima sugieren que la población se expandió después del período glacial del Pleistoceno. Para explicar la falta de diferenciación genética entre las poblaciones, a pesar de su aislamiento geográfico y de la fidelidad a sus sitios de nidificación, especulamos que el flujo de genes es controlado por las hembras de la población de tal modo que los acervos génicos son bastante homogéneos entre las poblaciones. Dicho flujo de genes podría ocurrir si se formaran las parejas en las bandadas mixtas en el invierno, no en el verano cuando están en sus áreas de nidificación.</description><subject>Animal populations</subject><subject>Animal reproduction</subject><subject>Birds</subject><subject>Breeding</subject><subject>Breeding sites</subject><subject>Charadrius montanus</subject><subject>Ecological genetics</subject><subject>Evolutionary genetics</subject><subject>FEATURE ARTICLES</subject><subject>Gene flow</subject><subject>Genetic diversity</subject><subject>Genetic variation</subject><subject>Geographic regions</subject><subject>Geography</subject><subject>Haplotypes</subject><subject>Mitochondrial DNA</subject><subject>Mountain Plover</subject><subject>Ornithology</subject><subject>Phylogeny</subject><subject>Pleistocene</subject><subject>Population differentiation</subject><subject>Population genetics</subject><subject>Population growth</subject><subject>Species extinction</subject><issn>0010-5422</issn><issn>1938-5129</issn><issn>2732-4621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0M1LwzAYBvAgCs7N_8BDEK_VfPQjOYYu2wJdMtdW8FTSNYUNXTXdDv73dkz04unlhR_PAw8AE4wecRyhpyTi4QUYYU5ZEGHCL8EIIYyCKCTkGtz0_Q4NPwnJCBQrsyozUSij4VxqWagUCi2y11zl0Mzg0pS6EErDVWZe5BqWudJzuFSFSRdGT9dKZHCqBczlcyl1KuFUFGICrlr71rvbnzsG5UwW6SLIzFylIgtqwsNDgGvWtDXnCeaExklCYxdTZ9uaJgQ3liHnmppSyu0G184yxiixIaFJ22wsJoyOwf0598N3n0fXH6pdd_T7obIiGFNEKKIDejijje_63ru2-vDbd-u_Koyq01zVaa6B3Z3Zrj90_teEiMcRjv-q6m3X7d3_Gd_bSWfK</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Oyler-McCance, Sara J</creator><creator>St. John, Judy</creator><creator>Knopf, Fritz L</creator><creator>Quinn, Tom W</creator><general>Cooper Ornithological Society</general><general>American Ornithological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7XB</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope></search><sort><creationdate>20050501</creationdate><title>POPULATION GENETIC ANALYSIS OF MOUNTAIN PLOVER USING MITOCHONDRIAL DNA SEQUENCE DATA</title><author>Oyler-McCance, Sara J ; St. John, Judy ; Knopf, Fritz L ; Quinn, Tom W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b294t-1b8dfb997192367736e63eafb3721da80eedb3339ac1bea88832a4237fdca1283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animal populations</topic><topic>Animal reproduction</topic><topic>Birds</topic><topic>Breeding</topic><topic>Breeding sites</topic><topic>Charadrius montanus</topic><topic>Ecological genetics</topic><topic>Evolutionary genetics</topic><topic>FEATURE ARTICLES</topic><topic>Gene flow</topic><topic>Genetic diversity</topic><topic>Genetic variation</topic><topic>Geographic regions</topic><topic>Geography</topic><topic>Haplotypes</topic><topic>Mitochondrial DNA</topic><topic>Mountain Plover</topic><topic>Ornithology</topic><topic>Phylogeny</topic><topic>Pleistocene</topic><topic>Population differentiation</topic><topic>Population genetics</topic><topic>Population growth</topic><topic>Species extinction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oyler-McCance, Sara J</creatorcontrib><creatorcontrib>St. John, Judy</creatorcontrib><creatorcontrib>Knopf, Fritz L</creatorcontrib><creatorcontrib>Quinn, Tom W</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><jtitle>The Condor (Los Angeles, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oyler-McCance, Sara J</au><au>St. John, Judy</au><au>Knopf, Fritz L</au><au>Quinn, Tom W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>POPULATION GENETIC ANALYSIS OF MOUNTAIN PLOVER USING MITOCHONDRIAL DNA SEQUENCE DATA</atitle><jtitle>The Condor (Los Angeles, Calif.)</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>107</volume><issue>2</issue><spage>353</spage><epage>362</epage><pages>353-362</pages><issn>0010-5422</issn><eissn>1938-5129</eissn><eissn>2732-4621</eissn><coden>CNDRAB</coden><abstract>Mountain Plover (Charadrius montanus) distribution and abundance have been reduced drastically in the past 30 years and the conversion of shortgrass prairie to agriculture has caused breeding populations to become geographically isolated. This, coupled with the fact that Mountain Plovers are thought to show fidelity to breeding grounds, leads to the prediction that the isolated breeding populations would be genetically distinct. This pattern, if observed, would have important management implications for a species at risk of extinction. Our study examined genetic variation at two mitochondrial regions for 20–30 individuals from each of four breeding sites. We found no evidence of significant population differentiation in the data from the control region or the ATPase 6/8 region. Nested-clade analysis revealed no relationship between haplotype phylogeny, and geography among the 47 control region haplotypes. In the ATPase 6/8 region, however, one of the two clades provided information suggesting that, historically, there has been continuous range expansion. Analysis of mismatch distributions and Tajima's D suggest that the Mountain Plover underwent a population expansion, following the Pleistocene glacial period. To explain the lack of detectable genetic differentiation among populations, despite their geographic isolation and fidelity to breeding locations, we speculate that there is sufficient female-mediated gene flow to homogenize gene pools among populations. Such gene flow might ensue if pair bonds are formed in mixed flocks on wintering grounds rather than on the summer breeding grounds. Análisis Genéticos de Poblaciones de Charadrius montanus Usando Secuencias de ADN Mitocondrial Resumen. La distribución y la abundancia de Charadrius montanus se han reducido drásticamente desde hace 30 años y las poblaciones han quedado más aisladas geográficamente debido a la transformación de las praderas de pastos cortos a tierras agrícolas. Estos cambios, combinados con el hecho de que se cree que C. montanus presenta fidelidad a sus áreas de nidificación, sugieren que las poblaciones reproductivas aisladas podrían ser distintas genéticamente. De observarse este patrón, tendría consecuencias importantes para el manejo de esta especie en peligro de extinción. En nuestro estudio, investigamos el patrón de variación genética en dos regiones mitocondriales en 20–30 individuos de C. montanus provenientes de cuatro sitios de nidificación. No encontramos evidencia de diferencias poblacionales significativas en los datos de la región de control, ni en la región de ATPasa 6/ 8. Un análisis de clados anidados reveló que no hay ninguna relación entre haplotipos filogenia y geografía entre los 47 haplotipos de la región de control. Sin embargo, en la región ATPasa 6/8, uno de los dos clados proveyó información que sugiere que la especie ha aumentado históricamente su rango de distribución. Análisis de distribuciones “mismatch” y de la D de Tajima sugieren que la población se expandió después del período glacial del Pleistoceno. Para explicar la falta de diferenciación genética entre las poblaciones, a pesar de su aislamiento geográfico y de la fidelidad a sus sitios de nidificación, especulamos que el flujo de genes es controlado por las hembras de la población de tal modo que los acervos génicos son bastante homogéneos entre las poblaciones. Dicho flujo de genes podría ocurrir si se formaran las parejas en las bandadas mixtas en el invierno, no en el verano cuando están en sus áreas de nidificación.</abstract><cop>Waco</cop><pub>Cooper Ornithological Society</pub><doi>10.1650/7594</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-5422 |
ispartof | The Condor (Los Angeles, Calif.), 2005-05, Vol.107 (2), p.353-362 |
issn | 0010-5422 1938-5129 2732-4621 |
language | eng |
recordid | cdi_proquest_journals_211302303 |
source | BioOne Complete; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Free E- Journals |
subjects | Animal populations Animal reproduction Birds Breeding Breeding sites Charadrius montanus Ecological genetics Evolutionary genetics FEATURE ARTICLES Gene flow Genetic diversity Genetic variation Geographic regions Geography Haplotypes Mitochondrial DNA Mountain Plover Ornithology Phylogeny Pleistocene Population differentiation Population genetics Population growth Species extinction |
title | POPULATION GENETIC ANALYSIS OF MOUNTAIN PLOVER USING MITOCHONDRIAL DNA SEQUENCE DATA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=POPULATION%20GENETIC%20ANALYSIS%20OF%20MOUNTAIN%20PLOVER%20USING%20MITOCHONDRIAL%20DNA%20SEQUENCE%20DATA&rft.jtitle=The%20Condor%20(Los%20Angeles,%20Calif.)&rft.au=Oyler-McCance,%20Sara%20J&rft.date=2005-05-01&rft.volume=107&rft.issue=2&rft.spage=353&rft.epage=362&rft.pages=353-362&rft.issn=0010-5422&rft.eissn=1938-5129&rft.coden=CNDRAB&rft_id=info:doi/10.1650/7594&rft_dat=%3Cjstor_proqu%3E4096516%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211302303&rft_id=info:pmid/&rft_jstor_id=4096516&rfr_iscdi=true |