Impact of viscosity variation on oblique flow of Cu–H2O nanofluid
The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The gove...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2018-10, Vol.232 (5), p.622-631 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 631 |
---|---|
container_issue | 5 |
container_start_page | 622 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering |
container_volume | 232 |
creator | Tabassum, R Mehmood, Rashid Pourmehran, O Akbar, NS Gorji-Bandpy, M |
description | The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux. |
doi_str_mv | 10.1177/0954408917732759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sage_</sourceid><recordid>TN_cdi_proquest_journals_2112961281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954408917732759</sage_id><sourcerecordid>2112961281</sourcerecordid><originalsourceid>FETCH-LOGICAL-p221t-ef88ce8a1fb5d2d9e9f596d71c651a224a97abe3d54ab7d7b2383bc690cf63943</originalsourceid><addsrcrecordid>eNpdkMFKxDAQhoMouK7ePQY8RzOTtGmOUtRdWNiLnkvSJtKlNrVpV7z5Dr6hT7ItKwgOAzPwf8w__IRcA78FUOqO60RKnulpF6gSfUIWyCUwwbk-JYtZZrN-Ti5i3PGpJFcLkq_fOlMONHi6r2MZYj180r3pazPUoaVz26Z-Hx31TfiYsXz8-fpe4Za2pg2-Gevqkpx500R39TuX5OXx4Tlfsc32aZ3fb1iHCANzPstKlxnwNqmw0k77RKeVgjJNwCBKo5WxTlSJNFZVyqLIhC1TzUufCi3Fktwc73Z9mD6KQ7ELY99OlgUCoE4BM5godqSieXV_BPBizqn4n5M4AE38Wlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112961281</pqid></control><display><type>article</type><title>Impact of viscosity variation on oblique flow of Cu–H2O nanofluid</title><source>SAGE Complete A-Z List</source><creator>Tabassum, R ; Mehmood, Rashid ; Pourmehran, O ; Akbar, NS ; Gorji-Bandpy, M</creator><creatorcontrib>Tabassum, R ; Mehmood, Rashid ; Pourmehran, O ; Akbar, NS ; Gorji-Bandpy, M</creatorcontrib><description>The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.</description><identifier>ISSN: 0954-4089</identifier><identifier>EISSN: 2041-3009</identifier><identifier>DOI: 10.1177/0954408917732759</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Coefficient of friction ; Copper ; Friction ; Heat ; Heat flux ; Heat transfer ; Nanofluids ; Nanoparticles ; Nonlinear equations ; Ordinary differential equations ; Parameters ; Partial differential equations ; Runge-Kutta method ; Skin friction ; Stagnation point ; Temperature dependence ; Temperature profiles ; Viscosity</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering, 2018-10, Vol.232 (5), p.622-631</ispartof><rights>IMechE 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954408917732759$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954408917732759$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids></links><search><creatorcontrib>Tabassum, R</creatorcontrib><creatorcontrib>Mehmood, Rashid</creatorcontrib><creatorcontrib>Pourmehran, O</creatorcontrib><creatorcontrib>Akbar, NS</creatorcontrib><creatorcontrib>Gorji-Bandpy, M</creatorcontrib><title>Impact of viscosity variation on oblique flow of Cu–H2O nanofluid</title><title>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</title><description>The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.</description><subject>Coefficient of friction</subject><subject>Copper</subject><subject>Friction</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Runge-Kutta method</subject><subject>Skin friction</subject><subject>Stagnation point</subject><subject>Temperature dependence</subject><subject>Temperature profiles</subject><subject>Viscosity</subject><issn>0954-4089</issn><issn>2041-3009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKxDAQhoMouK7ePQY8RzOTtGmOUtRdWNiLnkvSJtKlNrVpV7z5Dr6hT7ItKwgOAzPwf8w__IRcA78FUOqO60RKnulpF6gSfUIWyCUwwbk-JYtZZrN-Ti5i3PGpJFcLkq_fOlMONHi6r2MZYj180r3pazPUoaVz26Z-Hx31TfiYsXz8-fpe4Za2pg2-Gevqkpx500R39TuX5OXx4Tlfsc32aZ3fb1iHCANzPstKlxnwNqmw0k77RKeVgjJNwCBKo5WxTlSJNFZVyqLIhC1TzUufCi3Fktwc73Z9mD6KQ7ELY99OlgUCoE4BM5godqSieXV_BPBizqn4n5M4AE38Wlw</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Tabassum, R</creator><creator>Mehmood, Rashid</creator><creator>Pourmehran, O</creator><creator>Akbar, NS</creator><creator>Gorji-Bandpy, M</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201810</creationdate><title>Impact of viscosity variation on oblique flow of Cu–H2O nanofluid</title><author>Tabassum, R ; Mehmood, Rashid ; Pourmehran, O ; Akbar, NS ; Gorji-Bandpy, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p221t-ef88ce8a1fb5d2d9e9f596d71c651a224a97abe3d54ab7d7b2383bc690cf63943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coefficient of friction</topic><topic>Copper</topic><topic>Friction</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Runge-Kutta method</topic><topic>Skin friction</topic><topic>Stagnation point</topic><topic>Temperature dependence</topic><topic>Temperature profiles</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabassum, R</creatorcontrib><creatorcontrib>Mehmood, Rashid</creatorcontrib><creatorcontrib>Pourmehran, O</creatorcontrib><creatorcontrib>Akbar, NS</creatorcontrib><creatorcontrib>Gorji-Bandpy, M</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabassum, R</au><au>Mehmood, Rashid</au><au>Pourmehran, O</au><au>Akbar, NS</au><au>Gorji-Bandpy, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of viscosity variation on oblique flow of Cu–H2O nanofluid</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</jtitle><date>2018-10</date><risdate>2018</risdate><volume>232</volume><issue>5</issue><spage>622</spage><epage>631</epage><pages>622-631</pages><issn>0954-4089</issn><eissn>2041-3009</eissn><abstract>The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954408917732759</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4089 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering, 2018-10, Vol.232 (5), p.622-631 |
issn | 0954-4089 2041-3009 |
language | eng |
recordid | cdi_proquest_journals_2112961281 |
source | SAGE Complete A-Z List |
subjects | Coefficient of friction Copper Friction Heat Heat flux Heat transfer Nanofluids Nanoparticles Nonlinear equations Ordinary differential equations Parameters Partial differential equations Runge-Kutta method Skin friction Stagnation point Temperature dependence Temperature profiles Viscosity |
title | Impact of viscosity variation on oblique flow of Cu–H2O nanofluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sage_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20viscosity%20variation%20on%20oblique%20flow%20of%20Cu%E2%80%93H2O%20nanofluid&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20E,%20Journal%20of%20process%20mechanical%20engineering&rft.au=Tabassum,%20R&rft.date=2018-10&rft.volume=232&rft.issue=5&rft.spage=622&rft.epage=631&rft.pages=622-631&rft.issn=0954-4089&rft.eissn=2041-3009&rft_id=info:doi/10.1177/0954408917732759&rft_dat=%3Cproquest_sage_%3E2112961281%3C/proquest_sage_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112961281&rft_id=info:pmid/&rft_sage_id=10.1177_0954408917732759&rfr_iscdi=true |