Impact of viscosity variation on oblique flow of Cu–H2O nanofluid

The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The gove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2018-10, Vol.232 (5), p.622-631
Hauptverfasser: Tabassum, R, Mehmood, Rashid, Pourmehran, O, Akbar, NS, Gorji-Bandpy, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 631
container_issue 5
container_start_page 622
container_title Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering
container_volume 232
creator Tabassum, R
Mehmood, Rashid
Pourmehran, O
Akbar, NS
Gorji-Bandpy, M
description The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.
doi_str_mv 10.1177/0954408917732759
format Article
fullrecord <record><control><sourceid>proquest_sage_</sourceid><recordid>TN_cdi_proquest_journals_2112961281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954408917732759</sage_id><sourcerecordid>2112961281</sourcerecordid><originalsourceid>FETCH-LOGICAL-p221t-ef88ce8a1fb5d2d9e9f596d71c651a224a97abe3d54ab7d7b2383bc690cf63943</originalsourceid><addsrcrecordid>eNpdkMFKxDAQhoMouK7ePQY8RzOTtGmOUtRdWNiLnkvSJtKlNrVpV7z5Dr6hT7ItKwgOAzPwf8w__IRcA78FUOqO60RKnulpF6gSfUIWyCUwwbk-JYtZZrN-Ti5i3PGpJFcLkq_fOlMONHi6r2MZYj180r3pazPUoaVz26Z-Hx31TfiYsXz8-fpe4Za2pg2-Gevqkpx500R39TuX5OXx4Tlfsc32aZ3fb1iHCANzPstKlxnwNqmw0k77RKeVgjJNwCBKo5WxTlSJNFZVyqLIhC1TzUufCi3Fktwc73Z9mD6KQ7ELY99OlgUCoE4BM5godqSieXV_BPBizqn4n5M4AE38Wlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112961281</pqid></control><display><type>article</type><title>Impact of viscosity variation on oblique flow of Cu–H2O nanofluid</title><source>SAGE Complete A-Z List</source><creator>Tabassum, R ; Mehmood, Rashid ; Pourmehran, O ; Akbar, NS ; Gorji-Bandpy, M</creator><creatorcontrib>Tabassum, R ; Mehmood, Rashid ; Pourmehran, O ; Akbar, NS ; Gorji-Bandpy, M</creatorcontrib><description>The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.</description><identifier>ISSN: 0954-4089</identifier><identifier>EISSN: 2041-3009</identifier><identifier>DOI: 10.1177/0954408917732759</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Coefficient of friction ; Copper ; Friction ; Heat ; Heat flux ; Heat transfer ; Nanofluids ; Nanoparticles ; Nonlinear equations ; Ordinary differential equations ; Parameters ; Partial differential equations ; Runge-Kutta method ; Skin friction ; Stagnation point ; Temperature dependence ; Temperature profiles ; Viscosity</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering, 2018-10, Vol.232 (5), p.622-631</ispartof><rights>IMechE 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954408917732759$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954408917732759$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids></links><search><creatorcontrib>Tabassum, R</creatorcontrib><creatorcontrib>Mehmood, Rashid</creatorcontrib><creatorcontrib>Pourmehran, O</creatorcontrib><creatorcontrib>Akbar, NS</creatorcontrib><creatorcontrib>Gorji-Bandpy, M</creatorcontrib><title>Impact of viscosity variation on oblique flow of Cu–H2O nanofluid</title><title>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</title><description>The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.</description><subject>Coefficient of friction</subject><subject>Copper</subject><subject>Friction</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Runge-Kutta method</subject><subject>Skin friction</subject><subject>Stagnation point</subject><subject>Temperature dependence</subject><subject>Temperature profiles</subject><subject>Viscosity</subject><issn>0954-4089</issn><issn>2041-3009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKxDAQhoMouK7ePQY8RzOTtGmOUtRdWNiLnkvSJtKlNrVpV7z5Dr6hT7ItKwgOAzPwf8w__IRcA78FUOqO60RKnulpF6gSfUIWyCUwwbk-JYtZZrN-Ti5i3PGpJFcLkq_fOlMONHi6r2MZYj180r3pazPUoaVz26Z-Hx31TfiYsXz8-fpe4Za2pg2-Gevqkpx500R39TuX5OXx4Tlfsc32aZ3fb1iHCANzPstKlxnwNqmw0k77RKeVgjJNwCBKo5WxTlSJNFZVyqLIhC1TzUufCi3Fktwc73Z9mD6KQ7ELY99OlgUCoE4BM5godqSieXV_BPBizqn4n5M4AE38Wlw</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Tabassum, R</creator><creator>Mehmood, Rashid</creator><creator>Pourmehran, O</creator><creator>Akbar, NS</creator><creator>Gorji-Bandpy, M</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201810</creationdate><title>Impact of viscosity variation on oblique flow of Cu–H2O nanofluid</title><author>Tabassum, R ; Mehmood, Rashid ; Pourmehran, O ; Akbar, NS ; Gorji-Bandpy, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p221t-ef88ce8a1fb5d2d9e9f596d71c651a224a97abe3d54ab7d7b2383bc690cf63943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Coefficient of friction</topic><topic>Copper</topic><topic>Friction</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Runge-Kutta method</topic><topic>Skin friction</topic><topic>Stagnation point</topic><topic>Temperature dependence</topic><topic>Temperature profiles</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabassum, R</creatorcontrib><creatorcontrib>Mehmood, Rashid</creatorcontrib><creatorcontrib>Pourmehran, O</creatorcontrib><creatorcontrib>Akbar, NS</creatorcontrib><creatorcontrib>Gorji-Bandpy, M</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabassum, R</au><au>Mehmood, Rashid</au><au>Pourmehran, O</au><au>Akbar, NS</au><au>Gorji-Bandpy, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of viscosity variation on oblique flow of Cu–H2O nanofluid</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</jtitle><date>2018-10</date><risdate>2018</risdate><volume>232</volume><issue>5</issue><spage>622</spage><epage>631</epage><pages>622-631</pages><issn>0954-4089</issn><eissn>2041-3009</eissn><abstract>The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954408917732759</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4089
ispartof Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering, 2018-10, Vol.232 (5), p.622-631
issn 0954-4089
2041-3009
language eng
recordid cdi_proquest_journals_2112961281
source SAGE Complete A-Z List
subjects Coefficient of friction
Copper
Friction
Heat
Heat flux
Heat transfer
Nanofluids
Nanoparticles
Nonlinear equations
Ordinary differential equations
Parameters
Partial differential equations
Runge-Kutta method
Skin friction
Stagnation point
Temperature dependence
Temperature profiles
Viscosity
title Impact of viscosity variation on oblique flow of Cu–H2O nanofluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sage_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20viscosity%20variation%20on%20oblique%20flow%20of%20Cu%E2%80%93H2O%20nanofluid&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20E,%20Journal%20of%20process%20mechanical%20engineering&rft.au=Tabassum,%20R&rft.date=2018-10&rft.volume=232&rft.issue=5&rft.spage=622&rft.epage=631&rft.pages=622-631&rft.issn=0954-4089&rft.eissn=2041-3009&rft_id=info:doi/10.1177/0954408917732759&rft_dat=%3Cproquest_sage_%3E2112961281%3C/proquest_sage_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112961281&rft_id=info:pmid/&rft_sage_id=10.1177_0954408917732759&rfr_iscdi=true