Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity

Gut motility malfunction and pathological changes in the enteric nervous system (ENS) are observed in the early stages of Parkinson’s disease (PD). In many cases disturbances in the autonomous functions such as gut motility precedes the observed loss of central motor functions in PD. However, the me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 2018-12, Vol.43 (12), p.2288-2303
Hauptverfasser: Virga, Daniel M., Capps, Jessica, Vohra, Bhupinder P. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2303
container_issue 12
container_start_page 2288
container_title Neurochemical research
container_volume 43
creator Virga, Daniel M.
Capps, Jessica
Vohra, Bhupinder P. S.
description Gut motility malfunction and pathological changes in the enteric nervous system (ENS) are observed in the early stages of Parkinson’s disease (PD). In many cases disturbances in the autonomous functions such as gut motility precedes the observed loss of central motor functions in PD. However, the mechanism by which ENS degeneration occurs in PD is unknown. We show that parkinsonian mimetics rotenone and MPP+ induce neurite degeneration that precedes cell death in primary enteric neurons cultured in vitro. If the neuronal death signals originate from degenerating neurites, neuronal death should be prevented by inhibiting neurite degeneration. Our data demonstrate that overexpression of cytNmnat1, an axon protector, maintains healthy neurites in enteric neurons treated with either of the parkinsonian mimetics, but cannot protect the soma. We also demonstrate that neurite protection via cytNmnat1 is independent of mitochondrial dynamics or ATP levels. Overexpression of Bcl-xl, an anti-apoptotic factor, protects both the neuronal cell body and the neurites in both rotenone and MPP+ treated enteric neurons. Our data reveals that Bcl-xl and cytNmnat1 act through separate mechanisms to protect enteric neurites. Our findings suggest that neurite protection alone is not sufficient to inhibit enteric neuronal degeneration in rotenone or MPP+ toxicity, and enteric neurodegeneration in PD may be occurring through independent somatic and neuritic mechanisms. Thus, therapies targeting both axonal and somal protection can be important in finding interventions for enteric symptoms in PD.
doi_str_mv 10.1007/s11064-018-2649-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2112934279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112934279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287x-3c4ed006dee5d81a032569aeaff5e64ab39e7777c8ba8ad6a0a2af2247fd168b3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EoqXwAWyQJZYo4EfiJEtU8ZJaQFDWlhNPWiNqFzuRwt9jGh4rvBgv5tw70kHomJJzSkh-ESglIk0ILRIm0jLpd9CYZjlPREn4LhoTHreclmSEDkJ4JSSmGN1HI05YVrJcjFF3ZVvwpsb30HmnYQkWvGqNs9gEPAdtVAsaL1bedcsVvrMaNhCHbbcJ08aosho_u7V6i3y9UtaEdcDG4ifXgnUWtsD88fEML1xvatN-HKK9Rr0FOPr-J-jl-moxvU1mDzd308tZUrMi7xNep6AJERog0wVVhLNMlApU02QgUlXxEvL46qJShdJCEcVUw1iaN5qKouITdDr0brx77yC08tV13saTklHKSp6yvIwUHajauxA8NHLjzVr5D0mJ_BItB9EyipZfomUfMyffzV21Bv2b-DEbATYAIa7sEvzf6f9bPwESUIrH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112934279</pqid></control><display><type>article</type><title>Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Virga, Daniel M. ; Capps, Jessica ; Vohra, Bhupinder P. S.</creator><creatorcontrib>Virga, Daniel M. ; Capps, Jessica ; Vohra, Bhupinder P. S.</creatorcontrib><description>Gut motility malfunction and pathological changes in the enteric nervous system (ENS) are observed in the early stages of Parkinson’s disease (PD). In many cases disturbances in the autonomous functions such as gut motility precedes the observed loss of central motor functions in PD. However, the mechanism by which ENS degeneration occurs in PD is unknown. We show that parkinsonian mimetics rotenone and MPP+ induce neurite degeneration that precedes cell death in primary enteric neurons cultured in vitro. If the neuronal death signals originate from degenerating neurites, neuronal death should be prevented by inhibiting neurite degeneration. Our data demonstrate that overexpression of cytNmnat1, an axon protector, maintains healthy neurites in enteric neurons treated with either of the parkinsonian mimetics, but cannot protect the soma. We also demonstrate that neurite protection via cytNmnat1 is independent of mitochondrial dynamics or ATP levels. Overexpression of Bcl-xl, an anti-apoptotic factor, protects both the neuronal cell body and the neurites in both rotenone and MPP+ treated enteric neurons. Our data reveals that Bcl-xl and cytNmnat1 act through separate mechanisms to protect enteric neurites. Our findings suggest that neurite protection alone is not sufficient to inhibit enteric neuronal degeneration in rotenone or MPP+ toxicity, and enteric neurodegeneration in PD may be occurring through independent somatic and neuritic mechanisms. Thus, therapies targeting both axonal and somal protection can be important in finding interventions for enteric symptoms in PD.</description><identifier>ISSN: 0364-3190</identifier><identifier>EISSN: 1573-6903</identifier><identifier>DOI: 10.1007/s11064-018-2649-x</identifier><identifier>PMID: 30259276</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>1-Methyl-4-phenylpyridinium - toxicity ; Animals ; Apoptosis ; Axon guidance ; Axons ; Basal ganglia ; Bcl-x protein ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell body ; Cell death ; Cells, Cultured ; Central nervous system diseases ; Degeneration ; Enteric nervous system ; Enteric Nervous System - drug effects ; Enteric Nervous System - pathology ; Female ; Gastric motility ; Insecticides - toxicity ; Mice ; Mitochondria ; Mortality ; Motility ; Movement disorders ; MPP ; MPTP Poisoning - chemically induced ; MPTP Poisoning - pathology ; Nerve Degeneration - chemically induced ; Nerve Degeneration - pathology ; Nervous system ; Neurites - drug effects ; Neurites - pathology ; Neurochemistry ; Neurodegeneration ; Neurodegenerative diseases ; Neurology ; Neurons ; Neurosciences ; Original Paper ; Parkinson Disease, Secondary - chemically induced ; Parkinson Disease, Secondary - pathology ; Parkinson's disease ; Parkinsonian Disorders - chemically induced ; Parkinsonian Disorders - pathology ; Pregnancy ; Protectors ; Rotenone ; Rotenone - toxicity ; Toxicity</subject><ispartof>Neurochemical research, 2018-12, Vol.43 (12), p.2288-2303</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Neurochemical Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287x-3c4ed006dee5d81a032569aeaff5e64ab39e7777c8ba8ad6a0a2af2247fd168b3</citedby><cites>FETCH-LOGICAL-c287x-3c4ed006dee5d81a032569aeaff5e64ab39e7777c8ba8ad6a0a2af2247fd168b3</cites><orcidid>0000-0002-7052-3910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11064-018-2649-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11064-018-2649-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30259276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Virga, Daniel M.</creatorcontrib><creatorcontrib>Capps, Jessica</creatorcontrib><creatorcontrib>Vohra, Bhupinder P. S.</creatorcontrib><title>Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity</title><title>Neurochemical research</title><addtitle>Neurochem Res</addtitle><addtitle>Neurochem Res</addtitle><description>Gut motility malfunction and pathological changes in the enteric nervous system (ENS) are observed in the early stages of Parkinson’s disease (PD). In many cases disturbances in the autonomous functions such as gut motility precedes the observed loss of central motor functions in PD. However, the mechanism by which ENS degeneration occurs in PD is unknown. We show that parkinsonian mimetics rotenone and MPP+ induce neurite degeneration that precedes cell death in primary enteric neurons cultured in vitro. If the neuronal death signals originate from degenerating neurites, neuronal death should be prevented by inhibiting neurite degeneration. Our data demonstrate that overexpression of cytNmnat1, an axon protector, maintains healthy neurites in enteric neurons treated with either of the parkinsonian mimetics, but cannot protect the soma. We also demonstrate that neurite protection via cytNmnat1 is independent of mitochondrial dynamics or ATP levels. Overexpression of Bcl-xl, an anti-apoptotic factor, protects both the neuronal cell body and the neurites in both rotenone and MPP+ treated enteric neurons. Our data reveals that Bcl-xl and cytNmnat1 act through separate mechanisms to protect enteric neurites. Our findings suggest that neurite protection alone is not sufficient to inhibit enteric neuronal degeneration in rotenone or MPP+ toxicity, and enteric neurodegeneration in PD may be occurring through independent somatic and neuritic mechanisms. Thus, therapies targeting both axonal and somal protection can be important in finding interventions for enteric symptoms in PD.</description><subject>1-Methyl-4-phenylpyridinium - toxicity</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Axon guidance</subject><subject>Axons</subject><subject>Basal ganglia</subject><subject>Bcl-x protein</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell body</subject><subject>Cell death</subject><subject>Cells, Cultured</subject><subject>Central nervous system diseases</subject><subject>Degeneration</subject><subject>Enteric nervous system</subject><subject>Enteric Nervous System - drug effects</subject><subject>Enteric Nervous System - pathology</subject><subject>Female</subject><subject>Gastric motility</subject><subject>Insecticides - toxicity</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mortality</subject><subject>Motility</subject><subject>Movement disorders</subject><subject>MPP</subject><subject>MPTP Poisoning - chemically induced</subject><subject>MPTP Poisoning - pathology</subject><subject>Nerve Degeneration - chemically induced</subject><subject>Nerve Degeneration - pathology</subject><subject>Nervous system</subject><subject>Neurites - drug effects</subject><subject>Neurites - pathology</subject><subject>Neurochemistry</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Parkinson Disease, Secondary - chemically induced</subject><subject>Parkinson Disease, Secondary - pathology</subject><subject>Parkinson's disease</subject><subject>Parkinsonian Disorders - chemically induced</subject><subject>Parkinsonian Disorders - pathology</subject><subject>Pregnancy</subject><subject>Protectors</subject><subject>Rotenone</subject><subject>Rotenone - toxicity</subject><subject>Toxicity</subject><issn>0364-3190</issn><issn>1573-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRS0EoqXwAWyQJZYo4EfiJEtU8ZJaQFDWlhNPWiNqFzuRwt9jGh4rvBgv5tw70kHomJJzSkh-ESglIk0ILRIm0jLpd9CYZjlPREn4LhoTHreclmSEDkJ4JSSmGN1HI05YVrJcjFF3ZVvwpsb30HmnYQkWvGqNs9gEPAdtVAsaL1bedcsVvrMaNhCHbbcJ08aosho_u7V6i3y9UtaEdcDG4ifXgnUWtsD88fEML1xvatN-HKK9Rr0FOPr-J-jl-moxvU1mDzd308tZUrMi7xNep6AJERog0wVVhLNMlApU02QgUlXxEvL46qJShdJCEcVUw1iaN5qKouITdDr0brx77yC08tV13saTklHKSp6yvIwUHajauxA8NHLjzVr5D0mJ_BItB9EyipZfomUfMyffzV21Bv2b-DEbATYAIa7sEvzf6f9bPwESUIrH</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Virga, Daniel M.</creator><creator>Capps, Jessica</creator><creator>Vohra, Bhupinder P. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7052-3910</orcidid></search><sort><creationdate>20181201</creationdate><title>Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity</title><author>Virga, Daniel M. ; Capps, Jessica ; Vohra, Bhupinder P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287x-3c4ed006dee5d81a032569aeaff5e64ab39e7777c8ba8ad6a0a2af2247fd168b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>1-Methyl-4-phenylpyridinium - toxicity</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Axon guidance</topic><topic>Axons</topic><topic>Basal ganglia</topic><topic>Bcl-x protein</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell body</topic><topic>Cell death</topic><topic>Cells, Cultured</topic><topic>Central nervous system diseases</topic><topic>Degeneration</topic><topic>Enteric nervous system</topic><topic>Enteric Nervous System - drug effects</topic><topic>Enteric Nervous System - pathology</topic><topic>Female</topic><topic>Gastric motility</topic><topic>Insecticides - toxicity</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mortality</topic><topic>Motility</topic><topic>Movement disorders</topic><topic>MPP</topic><topic>MPTP Poisoning - chemically induced</topic><topic>MPTP Poisoning - pathology</topic><topic>Nerve Degeneration - chemically induced</topic><topic>Nerve Degeneration - pathology</topic><topic>Nervous system</topic><topic>Neurites - drug effects</topic><topic>Neurites - pathology</topic><topic>Neurochemistry</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Parkinson Disease, Secondary - chemically induced</topic><topic>Parkinson Disease, Secondary - pathology</topic><topic>Parkinson's disease</topic><topic>Parkinsonian Disorders - chemically induced</topic><topic>Parkinsonian Disorders - pathology</topic><topic>Pregnancy</topic><topic>Protectors</topic><topic>Rotenone</topic><topic>Rotenone - toxicity</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Virga, Daniel M.</creatorcontrib><creatorcontrib>Capps, Jessica</creatorcontrib><creatorcontrib>Vohra, Bhupinder P. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neurochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Virga, Daniel M.</au><au>Capps, Jessica</au><au>Vohra, Bhupinder P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity</atitle><jtitle>Neurochemical research</jtitle><stitle>Neurochem Res</stitle><addtitle>Neurochem Res</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>43</volume><issue>12</issue><spage>2288</spage><epage>2303</epage><pages>2288-2303</pages><issn>0364-3190</issn><eissn>1573-6903</eissn><abstract>Gut motility malfunction and pathological changes in the enteric nervous system (ENS) are observed in the early stages of Parkinson’s disease (PD). In many cases disturbances in the autonomous functions such as gut motility precedes the observed loss of central motor functions in PD. However, the mechanism by which ENS degeneration occurs in PD is unknown. We show that parkinsonian mimetics rotenone and MPP+ induce neurite degeneration that precedes cell death in primary enteric neurons cultured in vitro. If the neuronal death signals originate from degenerating neurites, neuronal death should be prevented by inhibiting neurite degeneration. Our data demonstrate that overexpression of cytNmnat1, an axon protector, maintains healthy neurites in enteric neurons treated with either of the parkinsonian mimetics, but cannot protect the soma. We also demonstrate that neurite protection via cytNmnat1 is independent of mitochondrial dynamics or ATP levels. Overexpression of Bcl-xl, an anti-apoptotic factor, protects both the neuronal cell body and the neurites in both rotenone and MPP+ treated enteric neurons. Our data reveals that Bcl-xl and cytNmnat1 act through separate mechanisms to protect enteric neurites. Our findings suggest that neurite protection alone is not sufficient to inhibit enteric neuronal degeneration in rotenone or MPP+ toxicity, and enteric neurodegeneration in PD may be occurring through independent somatic and neuritic mechanisms. Thus, therapies targeting both axonal and somal protection can be important in finding interventions for enteric symptoms in PD.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30259276</pmid><doi>10.1007/s11064-018-2649-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7052-3910</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0364-3190
ispartof Neurochemical research, 2018-12, Vol.43 (12), p.2288-2303
issn 0364-3190
1573-6903
language eng
recordid cdi_proquest_journals_2112934279
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 1-Methyl-4-phenylpyridinium - toxicity
Animals
Apoptosis
Axon guidance
Axons
Basal ganglia
Bcl-x protein
Biochemistry
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cell body
Cell death
Cells, Cultured
Central nervous system diseases
Degeneration
Enteric nervous system
Enteric Nervous System - drug effects
Enteric Nervous System - pathology
Female
Gastric motility
Insecticides - toxicity
Mice
Mitochondria
Mortality
Motility
Movement disorders
MPP
MPTP Poisoning - chemically induced
MPTP Poisoning - pathology
Nerve Degeneration - chemically induced
Nerve Degeneration - pathology
Nervous system
Neurites - drug effects
Neurites - pathology
Neurochemistry
Neurodegeneration
Neurodegenerative diseases
Neurology
Neurons
Neurosciences
Original Paper
Parkinson Disease, Secondary - chemically induced
Parkinson Disease, Secondary - pathology
Parkinson's disease
Parkinsonian Disorders - chemically induced
Parkinsonian Disorders - pathology
Pregnancy
Protectors
Rotenone
Rotenone - toxicity
Toxicity
title Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enteric%20Neurodegeneration%20is%20Mediated%20Through%20Independent%20Neuritic%20and%20Somal%20Mechanisms%20in%20Rotenone%20and%20MPP+%20Toxicity&rft.jtitle=Neurochemical%20research&rft.au=Virga,%20Daniel%20M.&rft.date=2018-12-01&rft.volume=43&rft.issue=12&rft.spage=2288&rft.epage=2303&rft.pages=2288-2303&rft.issn=0364-3190&rft.eissn=1573-6903&rft_id=info:doi/10.1007/s11064-018-2649-x&rft_dat=%3Cproquest_cross%3E2112934279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112934279&rft_id=info:pmid/30259276&rfr_iscdi=true