Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity
Gut motility malfunction and pathological changes in the enteric nervous system (ENS) are observed in the early stages of Parkinson’s disease (PD). In many cases disturbances in the autonomous functions such as gut motility precedes the observed loss of central motor functions in PD. However, the me...
Gespeichert in:
Veröffentlicht in: | Neurochemical research 2018-12, Vol.43 (12), p.2288-2303 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2303 |
---|---|
container_issue | 12 |
container_start_page | 2288 |
container_title | Neurochemical research |
container_volume | 43 |
creator | Virga, Daniel M. Capps, Jessica Vohra, Bhupinder P. S. |
description | Gut motility malfunction and pathological changes in the enteric nervous system (ENS) are observed in the early stages of Parkinson’s disease (PD). In many cases disturbances in the autonomous functions such as gut motility precedes the observed loss of central motor functions in PD. However, the mechanism by which ENS degeneration occurs in PD is unknown. We show that parkinsonian mimetics rotenone and MPP+ induce neurite degeneration that precedes cell death in primary enteric neurons cultured in vitro. If the neuronal death signals originate from degenerating neurites, neuronal death should be prevented by inhibiting neurite degeneration. Our data demonstrate that overexpression of cytNmnat1, an axon protector, maintains healthy neurites in enteric neurons treated with either of the parkinsonian mimetics, but cannot protect the soma. We also demonstrate that neurite protection via cytNmnat1 is independent of mitochondrial dynamics or ATP levels. Overexpression of Bcl-xl, an anti-apoptotic factor, protects both the neuronal cell body and the neurites in both rotenone and MPP+ treated enteric neurons. Our data reveals that Bcl-xl and cytNmnat1 act through separate mechanisms to protect enteric neurites. Our findings suggest that neurite protection alone is not sufficient to inhibit enteric neuronal degeneration in rotenone or MPP+ toxicity, and enteric neurodegeneration in PD may be occurring through independent somatic and neuritic mechanisms. Thus, therapies targeting both axonal and somal protection can be important in finding interventions for enteric symptoms in PD. |
doi_str_mv | 10.1007/s11064-018-2649-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2112934279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112934279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287x-3c4ed006dee5d81a032569aeaff5e64ab39e7777c8ba8ad6a0a2af2247fd168b3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EoqXwAWyQJZYo4EfiJEtU8ZJaQFDWlhNPWiNqFzuRwt9jGh4rvBgv5tw70kHomJJzSkh-ESglIk0ILRIm0jLpd9CYZjlPREn4LhoTHreclmSEDkJ4JSSmGN1HI05YVrJcjFF3ZVvwpsb30HmnYQkWvGqNs9gEPAdtVAsaL1bedcsVvrMaNhCHbbcJ08aosho_u7V6i3y9UtaEdcDG4ifXgnUWtsD88fEML1xvatN-HKK9Rr0FOPr-J-jl-moxvU1mDzd308tZUrMi7xNep6AJERog0wVVhLNMlApU02QgUlXxEvL46qJShdJCEcVUw1iaN5qKouITdDr0brx77yC08tV13saTklHKSp6yvIwUHajauxA8NHLjzVr5D0mJ_BItB9EyipZfomUfMyffzV21Bv2b-DEbATYAIa7sEvzf6f9bPwESUIrH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112934279</pqid></control><display><type>article</type><title>Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Virga, Daniel M. ; Capps, Jessica ; Vohra, Bhupinder P. S.</creator><creatorcontrib>Virga, Daniel M. ; Capps, Jessica ; Vohra, Bhupinder P. S.</creatorcontrib><description>Gut motility malfunction and pathological changes in the enteric nervous system (ENS) are observed in the early stages of Parkinson’s disease (PD). In many cases disturbances in the autonomous functions such as gut motility precedes the observed loss of central motor functions in PD. However, the mechanism by which ENS degeneration occurs in PD is unknown. We show that parkinsonian mimetics rotenone and MPP+ induce neurite degeneration that precedes cell death in primary enteric neurons cultured in vitro. If the neuronal death signals originate from degenerating neurites, neuronal death should be prevented by inhibiting neurite degeneration. Our data demonstrate that overexpression of cytNmnat1, an axon protector, maintains healthy neurites in enteric neurons treated with either of the parkinsonian mimetics, but cannot protect the soma. We also demonstrate that neurite protection via cytNmnat1 is independent of mitochondrial dynamics or ATP levels. Overexpression of Bcl-xl, an anti-apoptotic factor, protects both the neuronal cell body and the neurites in both rotenone and MPP+ treated enteric neurons. Our data reveals that Bcl-xl and cytNmnat1 act through separate mechanisms to protect enteric neurites. Our findings suggest that neurite protection alone is not sufficient to inhibit enteric neuronal degeneration in rotenone or MPP+ toxicity, and enteric neurodegeneration in PD may be occurring through independent somatic and neuritic mechanisms. Thus, therapies targeting both axonal and somal protection can be important in finding interventions for enteric symptoms in PD.</description><identifier>ISSN: 0364-3190</identifier><identifier>EISSN: 1573-6903</identifier><identifier>DOI: 10.1007/s11064-018-2649-x</identifier><identifier>PMID: 30259276</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>1-Methyl-4-phenylpyridinium - toxicity ; Animals ; Apoptosis ; Axon guidance ; Axons ; Basal ganglia ; Bcl-x protein ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell body ; Cell death ; Cells, Cultured ; Central nervous system diseases ; Degeneration ; Enteric nervous system ; Enteric Nervous System - drug effects ; Enteric Nervous System - pathology ; Female ; Gastric motility ; Insecticides - toxicity ; Mice ; Mitochondria ; Mortality ; Motility ; Movement disorders ; MPP ; MPTP Poisoning - chemically induced ; MPTP Poisoning - pathology ; Nerve Degeneration - chemically induced ; Nerve Degeneration - pathology ; Nervous system ; Neurites - drug effects ; Neurites - pathology ; Neurochemistry ; Neurodegeneration ; Neurodegenerative diseases ; Neurology ; Neurons ; Neurosciences ; Original Paper ; Parkinson Disease, Secondary - chemically induced ; Parkinson Disease, Secondary - pathology ; Parkinson's disease ; Parkinsonian Disorders - chemically induced ; Parkinsonian Disorders - pathology ; Pregnancy ; Protectors ; Rotenone ; Rotenone - toxicity ; Toxicity</subject><ispartof>Neurochemical research, 2018-12, Vol.43 (12), p.2288-2303</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Neurochemical Research is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287x-3c4ed006dee5d81a032569aeaff5e64ab39e7777c8ba8ad6a0a2af2247fd168b3</citedby><cites>FETCH-LOGICAL-c287x-3c4ed006dee5d81a032569aeaff5e64ab39e7777c8ba8ad6a0a2af2247fd168b3</cites><orcidid>0000-0002-7052-3910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11064-018-2649-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11064-018-2649-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30259276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Virga, Daniel M.</creatorcontrib><creatorcontrib>Capps, Jessica</creatorcontrib><creatorcontrib>Vohra, Bhupinder P. S.</creatorcontrib><title>Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity</title><title>Neurochemical research</title><addtitle>Neurochem Res</addtitle><addtitle>Neurochem Res</addtitle><description>Gut motility malfunction and pathological changes in the enteric nervous system (ENS) are observed in the early stages of Parkinson’s disease (PD). In many cases disturbances in the autonomous functions such as gut motility precedes the observed loss of central motor functions in PD. However, the mechanism by which ENS degeneration occurs in PD is unknown. We show that parkinsonian mimetics rotenone and MPP+ induce neurite degeneration that precedes cell death in primary enteric neurons cultured in vitro. If the neuronal death signals originate from degenerating neurites, neuronal death should be prevented by inhibiting neurite degeneration. Our data demonstrate that overexpression of cytNmnat1, an axon protector, maintains healthy neurites in enteric neurons treated with either of the parkinsonian mimetics, but cannot protect the soma. We also demonstrate that neurite protection via cytNmnat1 is independent of mitochondrial dynamics or ATP levels. Overexpression of Bcl-xl, an anti-apoptotic factor, protects both the neuronal cell body and the neurites in both rotenone and MPP+ treated enteric neurons. Our data reveals that Bcl-xl and cytNmnat1 act through separate mechanisms to protect enteric neurites. Our findings suggest that neurite protection alone is not sufficient to inhibit enteric neuronal degeneration in rotenone or MPP+ toxicity, and enteric neurodegeneration in PD may be occurring through independent somatic and neuritic mechanisms. Thus, therapies targeting both axonal and somal protection can be important in finding interventions for enteric symptoms in PD.</description><subject>1-Methyl-4-phenylpyridinium - toxicity</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Axon guidance</subject><subject>Axons</subject><subject>Basal ganglia</subject><subject>Bcl-x protein</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell body</subject><subject>Cell death</subject><subject>Cells, Cultured</subject><subject>Central nervous system diseases</subject><subject>Degeneration</subject><subject>Enteric nervous system</subject><subject>Enteric Nervous System - drug effects</subject><subject>Enteric Nervous System - pathology</subject><subject>Female</subject><subject>Gastric motility</subject><subject>Insecticides - toxicity</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mortality</subject><subject>Motility</subject><subject>Movement disorders</subject><subject>MPP</subject><subject>MPTP Poisoning - chemically induced</subject><subject>MPTP Poisoning - pathology</subject><subject>Nerve Degeneration - chemically induced</subject><subject>Nerve Degeneration - pathology</subject><subject>Nervous system</subject><subject>Neurites - drug effects</subject><subject>Neurites - pathology</subject><subject>Neurochemistry</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Parkinson Disease, Secondary - chemically induced</subject><subject>Parkinson Disease, Secondary - pathology</subject><subject>Parkinson's disease</subject><subject>Parkinsonian Disorders - chemically induced</subject><subject>Parkinsonian Disorders - pathology</subject><subject>Pregnancy</subject><subject>Protectors</subject><subject>Rotenone</subject><subject>Rotenone - toxicity</subject><subject>Toxicity</subject><issn>0364-3190</issn><issn>1573-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRS0EoqXwAWyQJZYo4EfiJEtU8ZJaQFDWlhNPWiNqFzuRwt9jGh4rvBgv5tw70kHomJJzSkh-ESglIk0ILRIm0jLpd9CYZjlPREn4LhoTHreclmSEDkJ4JSSmGN1HI05YVrJcjFF3ZVvwpsb30HmnYQkWvGqNs9gEPAdtVAsaL1bedcsVvrMaNhCHbbcJ08aosho_u7V6i3y9UtaEdcDG4ifXgnUWtsD88fEML1xvatN-HKK9Rr0FOPr-J-jl-moxvU1mDzd308tZUrMi7xNep6AJERog0wVVhLNMlApU02QgUlXxEvL46qJShdJCEcVUw1iaN5qKouITdDr0brx77yC08tV13saTklHKSp6yvIwUHajauxA8NHLjzVr5D0mJ_BItB9EyipZfomUfMyffzV21Bv2b-DEbATYAIa7sEvzf6f9bPwESUIrH</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Virga, Daniel M.</creator><creator>Capps, Jessica</creator><creator>Vohra, Bhupinder P. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7052-3910</orcidid></search><sort><creationdate>20181201</creationdate><title>Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity</title><author>Virga, Daniel M. ; Capps, Jessica ; Vohra, Bhupinder P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287x-3c4ed006dee5d81a032569aeaff5e64ab39e7777c8ba8ad6a0a2af2247fd168b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>1-Methyl-4-phenylpyridinium - toxicity</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Axon guidance</topic><topic>Axons</topic><topic>Basal ganglia</topic><topic>Bcl-x protein</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell body</topic><topic>Cell death</topic><topic>Cells, Cultured</topic><topic>Central nervous system diseases</topic><topic>Degeneration</topic><topic>Enteric nervous system</topic><topic>Enteric Nervous System - drug effects</topic><topic>Enteric Nervous System - pathology</topic><topic>Female</topic><topic>Gastric motility</topic><topic>Insecticides - toxicity</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mortality</topic><topic>Motility</topic><topic>Movement disorders</topic><topic>MPP</topic><topic>MPTP Poisoning - chemically induced</topic><topic>MPTP Poisoning - pathology</topic><topic>Nerve Degeneration - chemically induced</topic><topic>Nerve Degeneration - pathology</topic><topic>Nervous system</topic><topic>Neurites - drug effects</topic><topic>Neurites - pathology</topic><topic>Neurochemistry</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Parkinson Disease, Secondary - chemically induced</topic><topic>Parkinson Disease, Secondary - pathology</topic><topic>Parkinson's disease</topic><topic>Parkinsonian Disorders - chemically induced</topic><topic>Parkinsonian Disorders - pathology</topic><topic>Pregnancy</topic><topic>Protectors</topic><topic>Rotenone</topic><topic>Rotenone - toxicity</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Virga, Daniel M.</creatorcontrib><creatorcontrib>Capps, Jessica</creatorcontrib><creatorcontrib>Vohra, Bhupinder P. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neurochemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Virga, Daniel M.</au><au>Capps, Jessica</au><au>Vohra, Bhupinder P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity</atitle><jtitle>Neurochemical research</jtitle><stitle>Neurochem Res</stitle><addtitle>Neurochem Res</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>43</volume><issue>12</issue><spage>2288</spage><epage>2303</epage><pages>2288-2303</pages><issn>0364-3190</issn><eissn>1573-6903</eissn><abstract>Gut motility malfunction and pathological changes in the enteric nervous system (ENS) are observed in the early stages of Parkinson’s disease (PD). In many cases disturbances in the autonomous functions such as gut motility precedes the observed loss of central motor functions in PD. However, the mechanism by which ENS degeneration occurs in PD is unknown. We show that parkinsonian mimetics rotenone and MPP+ induce neurite degeneration that precedes cell death in primary enteric neurons cultured in vitro. If the neuronal death signals originate from degenerating neurites, neuronal death should be prevented by inhibiting neurite degeneration. Our data demonstrate that overexpression of cytNmnat1, an axon protector, maintains healthy neurites in enteric neurons treated with either of the parkinsonian mimetics, but cannot protect the soma. We also demonstrate that neurite protection via cytNmnat1 is independent of mitochondrial dynamics or ATP levels. Overexpression of Bcl-xl, an anti-apoptotic factor, protects both the neuronal cell body and the neurites in both rotenone and MPP+ treated enteric neurons. Our data reveals that Bcl-xl and cytNmnat1 act through separate mechanisms to protect enteric neurites. Our findings suggest that neurite protection alone is not sufficient to inhibit enteric neuronal degeneration in rotenone or MPP+ toxicity, and enteric neurodegeneration in PD may be occurring through independent somatic and neuritic mechanisms. Thus, therapies targeting both axonal and somal protection can be important in finding interventions for enteric symptoms in PD.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30259276</pmid><doi>10.1007/s11064-018-2649-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7052-3910</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-3190 |
ispartof | Neurochemical research, 2018-12, Vol.43 (12), p.2288-2303 |
issn | 0364-3190 1573-6903 |
language | eng |
recordid | cdi_proquest_journals_2112934279 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 1-Methyl-4-phenylpyridinium - toxicity Animals Apoptosis Axon guidance Axons Basal ganglia Bcl-x protein Biochemistry Biomedical and Life Sciences Biomedicine Cell Biology Cell body Cell death Cells, Cultured Central nervous system diseases Degeneration Enteric nervous system Enteric Nervous System - drug effects Enteric Nervous System - pathology Female Gastric motility Insecticides - toxicity Mice Mitochondria Mortality Motility Movement disorders MPP MPTP Poisoning - chemically induced MPTP Poisoning - pathology Nerve Degeneration - chemically induced Nerve Degeneration - pathology Nervous system Neurites - drug effects Neurites - pathology Neurochemistry Neurodegeneration Neurodegenerative diseases Neurology Neurons Neurosciences Original Paper Parkinson Disease, Secondary - chemically induced Parkinson Disease, Secondary - pathology Parkinson's disease Parkinsonian Disorders - chemically induced Parkinsonian Disorders - pathology Pregnancy Protectors Rotenone Rotenone - toxicity Toxicity |
title | Enteric Neurodegeneration is Mediated Through Independent Neuritic and Somal Mechanisms in Rotenone and MPP+ Toxicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enteric%20Neurodegeneration%20is%20Mediated%20Through%20Independent%20Neuritic%20and%20Somal%20Mechanisms%20in%20Rotenone%20and%20MPP+%20Toxicity&rft.jtitle=Neurochemical%20research&rft.au=Virga,%20Daniel%20M.&rft.date=2018-12-01&rft.volume=43&rft.issue=12&rft.spage=2288&rft.epage=2303&rft.pages=2288-2303&rft.issn=0364-3190&rft.eissn=1573-6903&rft_id=info:doi/10.1007/s11064-018-2649-x&rft_dat=%3Cproquest_cross%3E2112934279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112934279&rft_id=info:pmid/30259276&rfr_iscdi=true |