Tunable Corrosion Behavior of Calcium Phosphate Coated Fe-Mn-Si Alloys for Bone Implant Applications

This work deals with the electrodeposition of calcium phosphate coatings on the surface of Fe-Mn-Si alloys which is designed for bone implant applications. Three different alloy compositions are considered (Fe-23Mn-5Si, Fe-26Mn-5Si and Fe-30Mn-5Si, all in wt pct). In order to explore the impact of h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2018-12, Vol.49 (12), p.6553-6560
Hauptverfasser: Drevet, Richard, Zhukova, Yulia, Kadirov, Pulat, Dubinskiy, Sergey, Kazakbiev, Alibek, Pustov, Yury, Prokoshkin, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6560
container_issue 12
container_start_page 6553
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 49
creator Drevet, Richard
Zhukova, Yulia
Kadirov, Pulat
Dubinskiy, Sergey
Kazakbiev, Alibek
Pustov, Yury
Prokoshkin, Sergey
description This work deals with the electrodeposition of calcium phosphate coatings on the surface of Fe-Mn-Si alloys which is designed for bone implant applications. Three different alloy compositions are considered (Fe-23Mn-5Si, Fe-26Mn-5Si and Fe-30Mn-5Si, all in wt pct). In order to explore the impact of hydrogen peroxide (H 2 O 2 ) on the electrodeposition process, two different electrolytic solutions are studied, one that contains no H 2 O 2 and the other that contains 9 vol pct H 2 O 2 . The physicochemical characterizations reveal that the electrodeposited coating is made of an apatite phase of low crystallinity with less porosity when hydrogen peroxide is added to the electrolyte solution. The corrosion measurements of the uncoated and coated alloys are also carried out during immersion in Hank’s solution at 310 K (37 °C), a physiological solution that simulates the inorganic composition of the body fluids. Interestingly, it was found that the manganese content in the alloy and the porosity of the coating both modify the corrosion behavior, i.e ., the biodegradability of the Fe-Mn-Si alloy immersed in the physiological environment. Hence, the corrosion behavior of the calcium phosphate-coated Fe-Mn-Si alloys is tunable as a function of the experimental parameters used during the synthesis of the material.
doi_str_mv 10.1007/s11661-018-4907-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2112932439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112932439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b8631a86a7219cf76cc631e2b78a4b8e3f36e3914e974952813dff3ec0337b7c3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvAczSTbJPNsV2sFioK1nPIplm7ZbtZk12h_96UFTx5mRmG771hHkK3QO-BUvkQAYQAQiEnmaKSiDM0gVnGCaiMnqeZSk5mgvFLdBXjnlIKiosJ2m6G1pSNw4UPwcfat3jhdua79gH7ChemsfVwwG87H7ud6U9cqlu8dOSlJe81njeNP0ZcJX7hW4dXh64xbY_nXdfU1vTJMV6ji8o00d389in6WD5uimeyfn1aFfM1sRxET8pccDC5MJKBspUU1qaFY6XMTVbmjldcOK4gc0pmasZy4Nuq4s5SzmUpLZ-iu9G3C_5rcLHXez-ENp3UDIApzjKuEgUjZdPDMbhKd6E-mHDUQPUpTD2GqVOY-hSmFknDRk1MbPvpwp_z_6IfJqN2YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112932439</pqid></control><display><type>article</type><title>Tunable Corrosion Behavior of Calcium Phosphate Coated Fe-Mn-Si Alloys for Bone Implant Applications</title><source>Springer Online Journals【Remote access available】</source><creator>Drevet, Richard ; Zhukova, Yulia ; Kadirov, Pulat ; Dubinskiy, Sergey ; Kazakbiev, Alibek ; Pustov, Yury ; Prokoshkin, Sergey</creator><creatorcontrib>Drevet, Richard ; Zhukova, Yulia ; Kadirov, Pulat ; Dubinskiy, Sergey ; Kazakbiev, Alibek ; Pustov, Yury ; Prokoshkin, Sergey</creatorcontrib><description>This work deals with the electrodeposition of calcium phosphate coatings on the surface of Fe-Mn-Si alloys which is designed for bone implant applications. Three different alloy compositions are considered (Fe-23Mn-5Si, Fe-26Mn-5Si and Fe-30Mn-5Si, all in wt pct). In order to explore the impact of hydrogen peroxide (H 2 O 2 ) on the electrodeposition process, two different electrolytic solutions are studied, one that contains no H 2 O 2 and the other that contains 9 vol pct H 2 O 2 . The physicochemical characterizations reveal that the electrodeposited coating is made of an apatite phase of low crystallinity with less porosity when hydrogen peroxide is added to the electrolyte solution. The corrosion measurements of the uncoated and coated alloys are also carried out during immersion in Hank’s solution at 310 K (37 °C), a physiological solution that simulates the inorganic composition of the body fluids. Interestingly, it was found that the manganese content in the alloy and the porosity of the coating both modify the corrosion behavior, i.e ., the biodegradability of the Fe-Mn-Si alloy immersed in the physiological environment. Hence, the corrosion behavior of the calcium phosphate-coated Fe-Mn-Si alloys is tunable as a function of the experimental parameters used during the synthesis of the material.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-018-4907-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Apatite ; Biodegradability ; Body fluids ; Calcium ; Calcium phosphates ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coated electrodes ; Composition ; Corrosion ; Electrodeposition ; Ferrous alloys ; Hydrogen peroxide ; Iron ; Manganese ; Materials Science ; Metallic Materials ; Nanotechnology ; Phosphate coatings ; Physiology ; Porosity ; Structural Materials ; Submerging ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-12, Vol.49 (12), p.6553-6560</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2018</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b8631a86a7219cf76cc631e2b78a4b8e3f36e3914e974952813dff3ec0337b7c3</citedby><cites>FETCH-LOGICAL-c316t-b8631a86a7219cf76cc631e2b78a4b8e3f36e3914e974952813dff3ec0337b7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-018-4907-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-018-4907-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Drevet, Richard</creatorcontrib><creatorcontrib>Zhukova, Yulia</creatorcontrib><creatorcontrib>Kadirov, Pulat</creatorcontrib><creatorcontrib>Dubinskiy, Sergey</creatorcontrib><creatorcontrib>Kazakbiev, Alibek</creatorcontrib><creatorcontrib>Pustov, Yury</creatorcontrib><creatorcontrib>Prokoshkin, Sergey</creatorcontrib><title>Tunable Corrosion Behavior of Calcium Phosphate Coated Fe-Mn-Si Alloys for Bone Implant Applications</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>This work deals with the electrodeposition of calcium phosphate coatings on the surface of Fe-Mn-Si alloys which is designed for bone implant applications. Three different alloy compositions are considered (Fe-23Mn-5Si, Fe-26Mn-5Si and Fe-30Mn-5Si, all in wt pct). In order to explore the impact of hydrogen peroxide (H 2 O 2 ) on the electrodeposition process, two different electrolytic solutions are studied, one that contains no H 2 O 2 and the other that contains 9 vol pct H 2 O 2 . The physicochemical characterizations reveal that the electrodeposited coating is made of an apatite phase of low crystallinity with less porosity when hydrogen peroxide is added to the electrolyte solution. The corrosion measurements of the uncoated and coated alloys are also carried out during immersion in Hank’s solution at 310 K (37 °C), a physiological solution that simulates the inorganic composition of the body fluids. Interestingly, it was found that the manganese content in the alloy and the porosity of the coating both modify the corrosion behavior, i.e ., the biodegradability of the Fe-Mn-Si alloy immersed in the physiological environment. Hence, the corrosion behavior of the calcium phosphate-coated Fe-Mn-Si alloys is tunable as a function of the experimental parameters used during the synthesis of the material.</description><subject>Alloys</subject><subject>Apatite</subject><subject>Biodegradability</subject><subject>Body fluids</subject><subject>Calcium</subject><subject>Calcium phosphates</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coated electrodes</subject><subject>Composition</subject><subject>Corrosion</subject><subject>Electrodeposition</subject><subject>Ferrous alloys</subject><subject>Hydrogen peroxide</subject><subject>Iron</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Phosphate coatings</subject><subject>Physiology</subject><subject>Porosity</subject><subject>Structural Materials</subject><subject>Submerging</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wFvAczSTbJPNsV2sFioK1nPIplm7ZbtZk12h_96UFTx5mRmG771hHkK3QO-BUvkQAYQAQiEnmaKSiDM0gVnGCaiMnqeZSk5mgvFLdBXjnlIKiosJ2m6G1pSNw4UPwcfat3jhdua79gH7ChemsfVwwG87H7ud6U9cqlu8dOSlJe81njeNP0ZcJX7hW4dXh64xbY_nXdfU1vTJMV6ji8o00d389in6WD5uimeyfn1aFfM1sRxET8pccDC5MJKBspUU1qaFY6XMTVbmjldcOK4gc0pmasZy4Nuq4s5SzmUpLZ-iu9G3C_5rcLHXez-ENp3UDIApzjKuEgUjZdPDMbhKd6E-mHDUQPUpTD2GqVOY-hSmFknDRk1MbPvpwp_z_6IfJqN2YQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Drevet, Richard</creator><creator>Zhukova, Yulia</creator><creator>Kadirov, Pulat</creator><creator>Dubinskiy, Sergey</creator><creator>Kazakbiev, Alibek</creator><creator>Pustov, Yury</creator><creator>Prokoshkin, Sergey</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20181201</creationdate><title>Tunable Corrosion Behavior of Calcium Phosphate Coated Fe-Mn-Si Alloys for Bone Implant Applications</title><author>Drevet, Richard ; Zhukova, Yulia ; Kadirov, Pulat ; Dubinskiy, Sergey ; Kazakbiev, Alibek ; Pustov, Yury ; Prokoshkin, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b8631a86a7219cf76cc631e2b78a4b8e3f36e3914e974952813dff3ec0337b7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Apatite</topic><topic>Biodegradability</topic><topic>Body fluids</topic><topic>Calcium</topic><topic>Calcium phosphates</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coated electrodes</topic><topic>Composition</topic><topic>Corrosion</topic><topic>Electrodeposition</topic><topic>Ferrous alloys</topic><topic>Hydrogen peroxide</topic><topic>Iron</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Phosphate coatings</topic><topic>Physiology</topic><topic>Porosity</topic><topic>Structural Materials</topic><topic>Submerging</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drevet, Richard</creatorcontrib><creatorcontrib>Zhukova, Yulia</creatorcontrib><creatorcontrib>Kadirov, Pulat</creatorcontrib><creatorcontrib>Dubinskiy, Sergey</creatorcontrib><creatorcontrib>Kazakbiev, Alibek</creatorcontrib><creatorcontrib>Pustov, Yury</creatorcontrib><creatorcontrib>Prokoshkin, Sergey</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Proquest Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drevet, Richard</au><au>Zhukova, Yulia</au><au>Kadirov, Pulat</au><au>Dubinskiy, Sergey</au><au>Kazakbiev, Alibek</au><au>Pustov, Yury</au><au>Prokoshkin, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Corrosion Behavior of Calcium Phosphate Coated Fe-Mn-Si Alloys for Bone Implant Applications</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>49</volume><issue>12</issue><spage>6553</spage><epage>6560</epage><pages>6553-6560</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>This work deals with the electrodeposition of calcium phosphate coatings on the surface of Fe-Mn-Si alloys which is designed for bone implant applications. Three different alloy compositions are considered (Fe-23Mn-5Si, Fe-26Mn-5Si and Fe-30Mn-5Si, all in wt pct). In order to explore the impact of hydrogen peroxide (H 2 O 2 ) on the electrodeposition process, two different electrolytic solutions are studied, one that contains no H 2 O 2 and the other that contains 9 vol pct H 2 O 2 . The physicochemical characterizations reveal that the electrodeposited coating is made of an apatite phase of low crystallinity with less porosity when hydrogen peroxide is added to the electrolyte solution. The corrosion measurements of the uncoated and coated alloys are also carried out during immersion in Hank’s solution at 310 K (37 °C), a physiological solution that simulates the inorganic composition of the body fluids. Interestingly, it was found that the manganese content in the alloy and the porosity of the coating both modify the corrosion behavior, i.e ., the biodegradability of the Fe-Mn-Si alloy immersed in the physiological environment. Hence, the corrosion behavior of the calcium phosphate-coated Fe-Mn-Si alloys is tunable as a function of the experimental parameters used during the synthesis of the material.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-018-4907-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-12, Vol.49 (12), p.6553-6560
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2112932439
source Springer Online Journals【Remote access available】
subjects Alloys
Apatite
Biodegradability
Body fluids
Calcium
Calcium phosphates
Characterization and Evaluation of Materials
Chemistry and Materials Science
Coated electrodes
Composition
Corrosion
Electrodeposition
Ferrous alloys
Hydrogen peroxide
Iron
Manganese
Materials Science
Metallic Materials
Nanotechnology
Phosphate coatings
Physiology
Porosity
Structural Materials
Submerging
Surfaces and Interfaces
Thin Films
title Tunable Corrosion Behavior of Calcium Phosphate Coated Fe-Mn-Si Alloys for Bone Implant Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Corrosion%20Behavior%20of%20Calcium%20Phosphate%20Coated%20Fe-Mn-Si%20Alloys%20for%20Bone%20Implant%20Applications&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Drevet,%20Richard&rft.date=2018-12-01&rft.volume=49&rft.issue=12&rft.spage=6553&rft.epage=6560&rft.pages=6553-6560&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-018-4907-6&rft_dat=%3Cproquest_cross%3E2112932439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112932439&rft_id=info:pmid/&rfr_iscdi=true