Kelvin‐Helmholtz Instability in the Geotail Low‐Latitude Boundary Layer
The low‐latitude boundary layer stability problem in the geotail is solved numerically. This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow. It is shown that three types of unstable magnetohydrodynamic waves exist in this plasma sys...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2018-08, Vol.123 (8), p.6548-6561 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6561 |
---|---|
container_issue | 8 |
container_start_page | 6548 |
container_title | Journal of geophysical research. Space physics |
container_volume | 123 |
creator | Leonovich, A. S. Kozlov, D. A. |
description | The low‐latitude boundary layer stability problem in the geotail is solved numerically. This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow. It is shown that three types of unstable magnetohydrodynamic waves exist in this plasma system: (1) surface waves at the magnetopause, (2) waves radiated into the solar wind, and (3) eigenmodes of the waveguide within the geotail. Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate. They are driven in the Pc3–Pc6 geomagnetic pulsation range and have a local maximum at Pc4 frequencies. In the cylindrical model in question the minimum transverse wavelengths of the unstable oscillations are much less than the shear layer thickness. This differentiates it from models with Cartesian geometry, where the minimum transverse wavelengths of unstable oscillations are larger than the boundary layer thickness. In high‐speed solar wind flows the magnetopause is stable to surface waves but unstable to radiative modes. The growth rate of such oscillations is an order of magnitude smaller than that for surface waves generated in the low‐ to medium‐speed solar wind. If the helicity of high‐speed solar wind flows enwrapping the magnetosphere is small, the oscillations are unstable in the Pc4–Pc6 geomagnetic pulsation range, with their maximum growth rate being in the Pc5 range. If the helicity of high‐speed solar wind flow enwrapping the magnetosphere is large enough, the oscillations are unstable throughout the Pc1–Pc6 geomagnetic pulsation range.
Key Points
The low‐latitude boundary layer stability problem in the geotail is solved numerically
This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow
Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate |
doi_str_mv | 10.1029/2018JA025552 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2112699192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112699192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3072-e32530a45929f08cd77b5b32cf7d8a23cfcb820be2dbb0916466d39196aaeff33</originalsourceid><addsrcrecordid>eNp90M1KxDAQAOAgCi7r3nyAgleryaRpm-O66P4VBNFzSduUzZJt1iRV6slH8Bl9EiOr4Mm5zDB8zAyD0DnBVwQDvwZM8tUUA2MMjtAISMpjnmA4_q1pjk_RxLktDpGHFmEjtF5L_aK6z_ePhdS7jdH-LVp2zotKaeWHSHWR38hoLo0XSkeFeQ20EF75vpHRjem7RtghKsQg7Rk6aYV2cvKTx-jp7vZxtoiL-_lyNi3imuIMYkmBUSwSxoG3OK-bLKtYRaFusyYXQOu2rnLAlYSmqjAnaZKmDeWEp0LItqV0jC4Oc_fWPPfS-XJretuFlSUQAikPFoK6PKjaGuesbMu9VbtwbElw-f2x8u_HAqcH_qq0HP615Wr-MGVJQoF-AeC_bZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112699192</pqid></control><display><type>article</type><title>Kelvin‐Helmholtz Instability in the Geotail Low‐Latitude Boundary Layer</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Leonovich, A. S. ; Kozlov, D. A.</creator><creatorcontrib>Leonovich, A. S. ; Kozlov, D. A.</creatorcontrib><description>The low‐latitude boundary layer stability problem in the geotail is solved numerically. This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow. It is shown that three types of unstable magnetohydrodynamic waves exist in this plasma system: (1) surface waves at the magnetopause, (2) waves radiated into the solar wind, and (3) eigenmodes of the waveguide within the geotail. Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate. They are driven in the Pc3–Pc6 geomagnetic pulsation range and have a local maximum at Pc4 frequencies. In the cylindrical model in question the minimum transverse wavelengths of the unstable oscillations are much less than the shear layer thickness. This differentiates it from models with Cartesian geometry, where the minimum transverse wavelengths of unstable oscillations are larger than the boundary layer thickness. In high‐speed solar wind flows the magnetopause is stable to surface waves but unstable to radiative modes. The growth rate of such oscillations is an order of magnitude smaller than that for surface waves generated in the low‐ to medium‐speed solar wind. If the helicity of high‐speed solar wind flows enwrapping the magnetosphere is small, the oscillations are unstable in the Pc4–Pc6 geomagnetic pulsation range, with their maximum growth rate being in the Pc5 range. If the helicity of high‐speed solar wind flow enwrapping the magnetosphere is large enough, the oscillations are unstable throughout the Pc1–Pc6 geomagnetic pulsation range.
Key Points
The low‐latitude boundary layer stability problem in the geotail is solved numerically
This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow
Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2018JA025552</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Boundary layer ; Boundary layer stability ; Boundary layer thickness ; Boundary layers ; Computational fluid dynamics ; Fluid flow ; Geomagnetic pulsations ; Geomagnetism ; geotail ; Growth rate ; Helical flow ; Helicity ; Instability ; Kelvin-Helmholtz instability ; K‐H instability ; Latitude ; LLB ; Magnetic fields ; Magnetohydrodynamic waves ; Magnetohydrodynamics ; Magnetopause ; Magnetosphere ; Magnetospheres ; Magnetospheric-solar wind relationships ; Mathematical models ; MHD oscillations ; Oscillations ; Pulsation ; Smooth boundaries ; Solar wind ; Solar wind flow ; Solar wind velocity ; Surface waves ; Wavelengths ; Wind flow</subject><ispartof>Journal of geophysical research. Space physics, 2018-08, Vol.123 (8), p.6548-6561</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3072-e32530a45929f08cd77b5b32cf7d8a23cfcb820be2dbb0916466d39196aaeff33</citedby><cites>FETCH-LOGICAL-c3072-e32530a45929f08cd77b5b32cf7d8a23cfcb820be2dbb0916466d39196aaeff33</cites><orcidid>0000-0003-0009-4927 ; 0000-0001-7556-954X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JA025552$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JA025552$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Leonovich, A. S.</creatorcontrib><creatorcontrib>Kozlov, D. A.</creatorcontrib><title>Kelvin‐Helmholtz Instability in the Geotail Low‐Latitude Boundary Layer</title><title>Journal of geophysical research. Space physics</title><description>The low‐latitude boundary layer stability problem in the geotail is solved numerically. This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow. It is shown that three types of unstable magnetohydrodynamic waves exist in this plasma system: (1) surface waves at the magnetopause, (2) waves radiated into the solar wind, and (3) eigenmodes of the waveguide within the geotail. Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate. They are driven in the Pc3–Pc6 geomagnetic pulsation range and have a local maximum at Pc4 frequencies. In the cylindrical model in question the minimum transverse wavelengths of the unstable oscillations are much less than the shear layer thickness. This differentiates it from models with Cartesian geometry, where the minimum transverse wavelengths of unstable oscillations are larger than the boundary layer thickness. In high‐speed solar wind flows the magnetopause is stable to surface waves but unstable to radiative modes. The growth rate of such oscillations is an order of magnitude smaller than that for surface waves generated in the low‐ to medium‐speed solar wind. If the helicity of high‐speed solar wind flows enwrapping the magnetosphere is small, the oscillations are unstable in the Pc4–Pc6 geomagnetic pulsation range, with their maximum growth rate being in the Pc5 range. If the helicity of high‐speed solar wind flow enwrapping the magnetosphere is large enough, the oscillations are unstable throughout the Pc1–Pc6 geomagnetic pulsation range.
Key Points
The low‐latitude boundary layer stability problem in the geotail is solved numerically
This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow
Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate</description><subject>Boundary layer</subject><subject>Boundary layer stability</subject><subject>Boundary layer thickness</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Geomagnetic pulsations</subject><subject>Geomagnetism</subject><subject>geotail</subject><subject>Growth rate</subject><subject>Helical flow</subject><subject>Helicity</subject><subject>Instability</subject><subject>Kelvin-Helmholtz instability</subject><subject>K‐H instability</subject><subject>Latitude</subject><subject>LLB</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic waves</subject><subject>Magnetohydrodynamics</subject><subject>Magnetopause</subject><subject>Magnetosphere</subject><subject>Magnetospheres</subject><subject>Magnetospheric-solar wind relationships</subject><subject>Mathematical models</subject><subject>MHD oscillations</subject><subject>Oscillations</subject><subject>Pulsation</subject><subject>Smooth boundaries</subject><subject>Solar wind</subject><subject>Solar wind flow</subject><subject>Solar wind velocity</subject><subject>Surface waves</subject><subject>Wavelengths</subject><subject>Wind flow</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M1KxDAQAOAgCi7r3nyAgleryaRpm-O66P4VBNFzSduUzZJt1iRV6slH8Bl9EiOr4Mm5zDB8zAyD0DnBVwQDvwZM8tUUA2MMjtAISMpjnmA4_q1pjk_RxLktDpGHFmEjtF5L_aK6z_ePhdS7jdH-LVp2zotKaeWHSHWR38hoLo0XSkeFeQ20EF75vpHRjem7RtghKsQg7Rk6aYV2cvKTx-jp7vZxtoiL-_lyNi3imuIMYkmBUSwSxoG3OK-bLKtYRaFusyYXQOu2rnLAlYSmqjAnaZKmDeWEp0LItqV0jC4Oc_fWPPfS-XJretuFlSUQAikPFoK6PKjaGuesbMu9VbtwbElw-f2x8u_HAqcH_qq0HP615Wr-MGVJQoF-AeC_bZk</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Leonovich, A. S.</creator><creator>Kozlov, D. A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0009-4927</orcidid><orcidid>https://orcid.org/0000-0001-7556-954X</orcidid></search><sort><creationdate>201808</creationdate><title>Kelvin‐Helmholtz Instability in the Geotail Low‐Latitude Boundary Layer</title><author>Leonovich, A. S. ; Kozlov, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3072-e32530a45929f08cd77b5b32cf7d8a23cfcb820be2dbb0916466d39196aaeff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary layer</topic><topic>Boundary layer stability</topic><topic>Boundary layer thickness</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Geomagnetic pulsations</topic><topic>Geomagnetism</topic><topic>geotail</topic><topic>Growth rate</topic><topic>Helical flow</topic><topic>Helicity</topic><topic>Instability</topic><topic>Kelvin-Helmholtz instability</topic><topic>K‐H instability</topic><topic>Latitude</topic><topic>LLB</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic waves</topic><topic>Magnetohydrodynamics</topic><topic>Magnetopause</topic><topic>Magnetosphere</topic><topic>Magnetospheres</topic><topic>Magnetospheric-solar wind relationships</topic><topic>Mathematical models</topic><topic>MHD oscillations</topic><topic>Oscillations</topic><topic>Pulsation</topic><topic>Smooth boundaries</topic><topic>Solar wind</topic><topic>Solar wind flow</topic><topic>Solar wind velocity</topic><topic>Surface waves</topic><topic>Wavelengths</topic><topic>Wind flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leonovich, A. S.</creatorcontrib><creatorcontrib>Kozlov, D. A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leonovich, A. S.</au><au>Kozlov, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kelvin‐Helmholtz Instability in the Geotail Low‐Latitude Boundary Layer</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2018-08</date><risdate>2018</risdate><volume>123</volume><issue>8</issue><spage>6548</spage><epage>6561</epage><pages>6548-6561</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>The low‐latitude boundary layer stability problem in the geotail is solved numerically. This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow. It is shown that three types of unstable magnetohydrodynamic waves exist in this plasma system: (1) surface waves at the magnetopause, (2) waves radiated into the solar wind, and (3) eigenmodes of the waveguide within the geotail. Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate. They are driven in the Pc3–Pc6 geomagnetic pulsation range and have a local maximum at Pc4 frequencies. In the cylindrical model in question the minimum transverse wavelengths of the unstable oscillations are much less than the shear layer thickness. This differentiates it from models with Cartesian geometry, where the minimum transverse wavelengths of unstable oscillations are larger than the boundary layer thickness. In high‐speed solar wind flows the magnetopause is stable to surface waves but unstable to radiative modes. The growth rate of such oscillations is an order of magnitude smaller than that for surface waves generated in the low‐ to medium‐speed solar wind. If the helicity of high‐speed solar wind flows enwrapping the magnetosphere is small, the oscillations are unstable in the Pc4–Pc6 geomagnetic pulsation range, with their maximum growth rate being in the Pc5 range. If the helicity of high‐speed solar wind flow enwrapping the magnetosphere is large enough, the oscillations are unstable throughout the Pc1–Pc6 geomagnetic pulsation range.
Key Points
The low‐latitude boundary layer stability problem in the geotail is solved numerically
This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow
Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JA025552</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0009-4927</orcidid><orcidid>https://orcid.org/0000-0001-7556-954X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2018-08, Vol.123 (8), p.6548-6561 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_journals_2112699192 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | Boundary layer Boundary layer stability Boundary layer thickness Boundary layers Computational fluid dynamics Fluid flow Geomagnetic pulsations Geomagnetism geotail Growth rate Helical flow Helicity Instability Kelvin-Helmholtz instability K‐H instability Latitude LLB Magnetic fields Magnetohydrodynamic waves Magnetohydrodynamics Magnetopause Magnetosphere Magnetospheres Magnetospheric-solar wind relationships Mathematical models MHD oscillations Oscillations Pulsation Smooth boundaries Solar wind Solar wind flow Solar wind velocity Surface waves Wavelengths Wind flow |
title | Kelvin‐Helmholtz Instability in the Geotail Low‐Latitude Boundary Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kelvin%E2%80%90Helmholtz%20Instability%20in%20the%20Geotail%20Low%E2%80%90Latitude%20Boundary%20Layer&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Leonovich,%20A.%20S.&rft.date=2018-08&rft.volume=123&rft.issue=8&rft.spage=6548&rft.epage=6561&rft.pages=6548-6561&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2018JA025552&rft_dat=%3Cproquest_cross%3E2112699192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112699192&rft_id=info:pmid/&rfr_iscdi=true |