Kelvin‐Helmholtz Instability in the Geotail Low‐Latitude Boundary Layer

The low‐latitude boundary layer stability problem in the geotail is solved numerically. This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow. It is shown that three types of unstable magnetohydrodynamic waves exist in this plasma sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2018-08, Vol.123 (8), p.6548-6561
Hauptverfasser: Leonovich, A. S., Kozlov, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6561
container_issue 8
container_start_page 6548
container_title Journal of geophysical research. Space physics
container_volume 123
creator Leonovich, A. S.
Kozlov, D. A.
description The low‐latitude boundary layer stability problem in the geotail is solved numerically. This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow. It is shown that three types of unstable magnetohydrodynamic waves exist in this plasma system: (1) surface waves at the magnetopause, (2) waves radiated into the solar wind, and (3) eigenmodes of the waveguide within the geotail. Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate. They are driven in the Pc3–Pc6 geomagnetic pulsation range and have a local maximum at Pc4 frequencies. In the cylindrical model in question the minimum transverse wavelengths of the unstable oscillations are much less than the shear layer thickness. This differentiates it from models with Cartesian geometry, where the minimum transverse wavelengths of unstable oscillations are larger than the boundary layer thickness. In high‐speed solar wind flows the magnetopause is stable to surface waves but unstable to radiative modes. The growth rate of such oscillations is an order of magnitude smaller than that for surface waves generated in the low‐ to medium‐speed solar wind. If the helicity of high‐speed solar wind flows enwrapping the magnetosphere is small, the oscillations are unstable in the Pc4–Pc6 geomagnetic pulsation range, with their maximum growth rate being in the Pc5 range. If the helicity of high‐speed solar wind flow enwrapping the magnetosphere is large enough, the oscillations are unstable throughout the Pc1–Pc6 geomagnetic pulsation range. Key Points The low‐latitude boundary layer stability problem in the geotail is solved numerically This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate
doi_str_mv 10.1029/2018JA025552
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2112699192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112699192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3072-e32530a45929f08cd77b5b32cf7d8a23cfcb820be2dbb0916466d39196aaeff33</originalsourceid><addsrcrecordid>eNp90M1KxDAQAOAgCi7r3nyAgleryaRpm-O66P4VBNFzSduUzZJt1iRV6slH8Bl9EiOr4Mm5zDB8zAyD0DnBVwQDvwZM8tUUA2MMjtAISMpjnmA4_q1pjk_RxLktDpGHFmEjtF5L_aK6z_ePhdS7jdH-LVp2zotKaeWHSHWR38hoLo0XSkeFeQ20EF75vpHRjem7RtghKsQg7Rk6aYV2cvKTx-jp7vZxtoiL-_lyNi3imuIMYkmBUSwSxoG3OK-bLKtYRaFusyYXQOu2rnLAlYSmqjAnaZKmDeWEp0LItqV0jC4Oc_fWPPfS-XJretuFlSUQAikPFoK6PKjaGuesbMu9VbtwbElw-f2x8u_HAqcH_qq0HP615Wr-MGVJQoF-AeC_bZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112699192</pqid></control><display><type>article</type><title>Kelvin‐Helmholtz Instability in the Geotail Low‐Latitude Boundary Layer</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Leonovich, A. S. ; Kozlov, D. A.</creator><creatorcontrib>Leonovich, A. S. ; Kozlov, D. A.</creatorcontrib><description>The low‐latitude boundary layer stability problem in the geotail is solved numerically. This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow. It is shown that three types of unstable magnetohydrodynamic waves exist in this plasma system: (1) surface waves at the magnetopause, (2) waves radiated into the solar wind, and (3) eigenmodes of the waveguide within the geotail. Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate. They are driven in the Pc3–Pc6 geomagnetic pulsation range and have a local maximum at Pc4 frequencies. In the cylindrical model in question the minimum transverse wavelengths of the unstable oscillations are much less than the shear layer thickness. This differentiates it from models with Cartesian geometry, where the minimum transverse wavelengths of unstable oscillations are larger than the boundary layer thickness. In high‐speed solar wind flows the magnetopause is stable to surface waves but unstable to radiative modes. The growth rate of such oscillations is an order of magnitude smaller than that for surface waves generated in the low‐ to medium‐speed solar wind. If the helicity of high‐speed solar wind flows enwrapping the magnetosphere is small, the oscillations are unstable in the Pc4–Pc6 geomagnetic pulsation range, with their maximum growth rate being in the Pc5 range. If the helicity of high‐speed solar wind flow enwrapping the magnetosphere is large enough, the oscillations are unstable throughout the Pc1–Pc6 geomagnetic pulsation range. Key Points The low‐latitude boundary layer stability problem in the geotail is solved numerically This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2018JA025552</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Boundary layer ; Boundary layer stability ; Boundary layer thickness ; Boundary layers ; Computational fluid dynamics ; Fluid flow ; Geomagnetic pulsations ; Geomagnetism ; geotail ; Growth rate ; Helical flow ; Helicity ; Instability ; Kelvin-Helmholtz instability ; K‐H instability ; Latitude ; LLB ; Magnetic fields ; Magnetohydrodynamic waves ; Magnetohydrodynamics ; Magnetopause ; Magnetosphere ; Magnetospheres ; Magnetospheric-solar wind relationships ; Mathematical models ; MHD oscillations ; Oscillations ; Pulsation ; Smooth boundaries ; Solar wind ; Solar wind flow ; Solar wind velocity ; Surface waves ; Wavelengths ; Wind flow</subject><ispartof>Journal of geophysical research. Space physics, 2018-08, Vol.123 (8), p.6548-6561</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3072-e32530a45929f08cd77b5b32cf7d8a23cfcb820be2dbb0916466d39196aaeff33</citedby><cites>FETCH-LOGICAL-c3072-e32530a45929f08cd77b5b32cf7d8a23cfcb820be2dbb0916466d39196aaeff33</cites><orcidid>0000-0003-0009-4927 ; 0000-0001-7556-954X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JA025552$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JA025552$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Leonovich, A. S.</creatorcontrib><creatorcontrib>Kozlov, D. A.</creatorcontrib><title>Kelvin‐Helmholtz Instability in the Geotail Low‐Latitude Boundary Layer</title><title>Journal of geophysical research. Space physics</title><description>The low‐latitude boundary layer stability problem in the geotail is solved numerically. This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow. It is shown that three types of unstable magnetohydrodynamic waves exist in this plasma system: (1) surface waves at the magnetopause, (2) waves radiated into the solar wind, and (3) eigenmodes of the waveguide within the geotail. Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate. They are driven in the Pc3–Pc6 geomagnetic pulsation range and have a local maximum at Pc4 frequencies. In the cylindrical model in question the minimum transverse wavelengths of the unstable oscillations are much less than the shear layer thickness. This differentiates it from models with Cartesian geometry, where the minimum transverse wavelengths of unstable oscillations are larger than the boundary layer thickness. In high‐speed solar wind flows the magnetopause is stable to surface waves but unstable to radiative modes. The growth rate of such oscillations is an order of magnitude smaller than that for surface waves generated in the low‐ to medium‐speed solar wind. If the helicity of high‐speed solar wind flows enwrapping the magnetosphere is small, the oscillations are unstable in the Pc4–Pc6 geomagnetic pulsation range, with their maximum growth rate being in the Pc5 range. If the helicity of high‐speed solar wind flow enwrapping the magnetosphere is large enough, the oscillations are unstable throughout the Pc1–Pc6 geomagnetic pulsation range. Key Points The low‐latitude boundary layer stability problem in the geotail is solved numerically This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate</description><subject>Boundary layer</subject><subject>Boundary layer stability</subject><subject>Boundary layer thickness</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Geomagnetic pulsations</subject><subject>Geomagnetism</subject><subject>geotail</subject><subject>Growth rate</subject><subject>Helical flow</subject><subject>Helicity</subject><subject>Instability</subject><subject>Kelvin-Helmholtz instability</subject><subject>K‐H instability</subject><subject>Latitude</subject><subject>LLB</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic waves</subject><subject>Magnetohydrodynamics</subject><subject>Magnetopause</subject><subject>Magnetosphere</subject><subject>Magnetospheres</subject><subject>Magnetospheric-solar wind relationships</subject><subject>Mathematical models</subject><subject>MHD oscillations</subject><subject>Oscillations</subject><subject>Pulsation</subject><subject>Smooth boundaries</subject><subject>Solar wind</subject><subject>Solar wind flow</subject><subject>Solar wind velocity</subject><subject>Surface waves</subject><subject>Wavelengths</subject><subject>Wind flow</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M1KxDAQAOAgCi7r3nyAgleryaRpm-O66P4VBNFzSduUzZJt1iRV6slH8Bl9EiOr4Mm5zDB8zAyD0DnBVwQDvwZM8tUUA2MMjtAISMpjnmA4_q1pjk_RxLktDpGHFmEjtF5L_aK6z_ePhdS7jdH-LVp2zotKaeWHSHWR38hoLo0XSkeFeQ20EF75vpHRjem7RtghKsQg7Rk6aYV2cvKTx-jp7vZxtoiL-_lyNi3imuIMYkmBUSwSxoG3OK-bLKtYRaFusyYXQOu2rnLAlYSmqjAnaZKmDeWEp0LItqV0jC4Oc_fWPPfS-XJretuFlSUQAikPFoK6PKjaGuesbMu9VbtwbElw-f2x8u_HAqcH_qq0HP615Wr-MGVJQoF-AeC_bZk</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Leonovich, A. S.</creator><creator>Kozlov, D. A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0009-4927</orcidid><orcidid>https://orcid.org/0000-0001-7556-954X</orcidid></search><sort><creationdate>201808</creationdate><title>Kelvin‐Helmholtz Instability in the Geotail Low‐Latitude Boundary Layer</title><author>Leonovich, A. S. ; Kozlov, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3072-e32530a45929f08cd77b5b32cf7d8a23cfcb820be2dbb0916466d39196aaeff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary layer</topic><topic>Boundary layer stability</topic><topic>Boundary layer thickness</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Geomagnetic pulsations</topic><topic>Geomagnetism</topic><topic>geotail</topic><topic>Growth rate</topic><topic>Helical flow</topic><topic>Helicity</topic><topic>Instability</topic><topic>Kelvin-Helmholtz instability</topic><topic>K‐H instability</topic><topic>Latitude</topic><topic>LLB</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic waves</topic><topic>Magnetohydrodynamics</topic><topic>Magnetopause</topic><topic>Magnetosphere</topic><topic>Magnetospheres</topic><topic>Magnetospheric-solar wind relationships</topic><topic>Mathematical models</topic><topic>MHD oscillations</topic><topic>Oscillations</topic><topic>Pulsation</topic><topic>Smooth boundaries</topic><topic>Solar wind</topic><topic>Solar wind flow</topic><topic>Solar wind velocity</topic><topic>Surface waves</topic><topic>Wavelengths</topic><topic>Wind flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leonovich, A. S.</creatorcontrib><creatorcontrib>Kozlov, D. A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leonovich, A. S.</au><au>Kozlov, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kelvin‐Helmholtz Instability in the Geotail Low‐Latitude Boundary Layer</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2018-08</date><risdate>2018</risdate><volume>123</volume><issue>8</issue><spage>6548</spage><epage>6561</epage><pages>6548-6561</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>The low‐latitude boundary layer stability problem in the geotail is solved numerically. This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow. It is shown that three types of unstable magnetohydrodynamic waves exist in this plasma system: (1) surface waves at the magnetopause, (2) waves radiated into the solar wind, and (3) eigenmodes of the waveguide within the geotail. Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate. They are driven in the Pc3–Pc6 geomagnetic pulsation range and have a local maximum at Pc4 frequencies. In the cylindrical model in question the minimum transverse wavelengths of the unstable oscillations are much less than the shear layer thickness. This differentiates it from models with Cartesian geometry, where the minimum transverse wavelengths of unstable oscillations are larger than the boundary layer thickness. In high‐speed solar wind flows the magnetopause is stable to surface waves but unstable to radiative modes. The growth rate of such oscillations is an order of magnitude smaller than that for surface waves generated in the low‐ to medium‐speed solar wind. If the helicity of high‐speed solar wind flows enwrapping the magnetosphere is small, the oscillations are unstable in the Pc4–Pc6 geomagnetic pulsation range, with their maximum growth rate being in the Pc5 range. If the helicity of high‐speed solar wind flow enwrapping the magnetosphere is large enough, the oscillations are unstable throughout the Pc1–Pc6 geomagnetic pulsation range. Key Points The low‐latitude boundary layer stability problem in the geotail is solved numerically This study relies on a cylindrical model of the geotail, with a smooth boundary, enwrapped by a helical solar wind flow Unstable surface waves generated in the low‐ to medium‐speed solar wind have the largest growth rate</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JA025552</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0009-4927</orcidid><orcidid>https://orcid.org/0000-0001-7556-954X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2018-08, Vol.123 (8), p.6548-6561
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_2112699192
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Boundary layer
Boundary layer stability
Boundary layer thickness
Boundary layers
Computational fluid dynamics
Fluid flow
Geomagnetic pulsations
Geomagnetism
geotail
Growth rate
Helical flow
Helicity
Instability
Kelvin-Helmholtz instability
K‐H instability
Latitude
LLB
Magnetic fields
Magnetohydrodynamic waves
Magnetohydrodynamics
Magnetopause
Magnetosphere
Magnetospheres
Magnetospheric-solar wind relationships
Mathematical models
MHD oscillations
Oscillations
Pulsation
Smooth boundaries
Solar wind
Solar wind flow
Solar wind velocity
Surface waves
Wavelengths
Wind flow
title Kelvin‐Helmholtz Instability in the Geotail Low‐Latitude Boundary Layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kelvin%E2%80%90Helmholtz%20Instability%20in%20the%20Geotail%20Low%E2%80%90Latitude%20Boundary%20Layer&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Leonovich,%20A.%20S.&rft.date=2018-08&rft.volume=123&rft.issue=8&rft.spage=6548&rft.epage=6561&rft.pages=6548-6561&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2018JA025552&rft_dat=%3Cproquest_cross%3E2112699192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112699192&rft_id=info:pmid/&rfr_iscdi=true