Estimation of effective thermal conductivity in U-10Mo fuels with distributed xenon gas bubbles

We simulate the influence of distributed xenon gas bubbles on the effective thermal conductivity of irradiated U-10Mo fuel using a two-dimensional finite element method (FEM). The effective thermal conductivity of the inhomogeneous materials is estimated by solving the heat equation on a two-dimensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2018-09, Vol.508, p.159-167
Hauptverfasser: Iasir, A. Rafi M., Peters, Nickie J., Hammond, Karl D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue
container_start_page 159
container_title Journal of nuclear materials
container_volume 508
creator Iasir, A. Rafi M.
Peters, Nickie J.
Hammond, Karl D.
description We simulate the influence of distributed xenon gas bubbles on the effective thermal conductivity of irradiated U-10Mo fuel using a two-dimensional finite element method (FEM). The effective thermal conductivity of the inhomogeneous materials is estimated by solving the heat equation on a two-dimensional domain and estimating the mean temperature and heat flux. Bubble size distributions representative of both intra- and inter-granular fission gas bubbles are simulated. A distribution consistent with a gas bubble superlattice is compared to less-ordered bubble distributions in the intra-granular case. For inter-granular bubbles, the bubbles' spatial and size distribution was estimated from a two-dimensional scanning electron microscopy (SEM) image of fission gas bubbles that had collected on grain boundaries. The obtained results are compared with some theoretical models and experimental results. The results indicate that the pressure inside the bubbles has minimal influence on the overall thermal conductivity. The effect of krypton concentration is also negligible compared to pure xenon bubbles. Bubble arrangement is also insignificant unless a relatively wide bubble-free path through the metal exists. However, the area fraction of xenon bubbles has a significant impact on the overall thermal conductivity.
doi_str_mv 10.1016/j.jnucmat.2018.05.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2112644722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311518302551</els_id><sourcerecordid>2112644722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-3d028f4a9bc8f50ff8e3270dbfc36742aa02446a7b503adfd95b6f331d407ff53</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QQi4nvEmmcxMVyLFF1Tc2HXI5GEztJOaZKr996a0e1cXDuecy_kQuiVQEiD1fV_2w6g2MpUUSFsCL4HRMzQhbcOKqqVwjiYAlBaMEH6JrmLsAYDPgE-QeIrJ5ajzA_YWG2uNSm5ncFqZsJFrrPygx4Pk0h67AS8LAu8e29GsI_5xaYW1iym4bkxG418z5KIvGXE3dt3axGt0YeU6mpvTnaLl89Pn_LVYfLy8zR8XhWKsSQXTQFtbyVmnWsvB2tYw2oDurGJ1U1EpgVZVLZuOA5Pa6hnvassY0RU01nI2RXfH3m3w36OJSfR-DEN-KSghtK6qhtLs4keXCj7GYKzYhrw-7AUBcWApenFiKQ4sBXCRWebcwzGXR5udM0FE5cygjHYh8xLau38a_gBxXYDB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112644722</pqid></control><display><type>article</type><title>Estimation of effective thermal conductivity in U-10Mo fuels with distributed xenon gas bubbles</title><source>Elsevier ScienceDirect Journals</source><creator>Iasir, A. Rafi M. ; Peters, Nickie J. ; Hammond, Karl D.</creator><creatorcontrib>Iasir, A. Rafi M. ; Peters, Nickie J. ; Hammond, Karl D.</creatorcontrib><description>We simulate the influence of distributed xenon gas bubbles on the effective thermal conductivity of irradiated U-10Mo fuel using a two-dimensional finite element method (FEM). The effective thermal conductivity of the inhomogeneous materials is estimated by solving the heat equation on a two-dimensional domain and estimating the mean temperature and heat flux. Bubble size distributions representative of both intra- and inter-granular fission gas bubbles are simulated. A distribution consistent with a gas bubble superlattice is compared to less-ordered bubble distributions in the intra-granular case. For inter-granular bubbles, the bubbles' spatial and size distribution was estimated from a two-dimensional scanning electron microscopy (SEM) image of fission gas bubbles that had collected on grain boundaries. The obtained results are compared with some theoretical models and experimental results. The results indicate that the pressure inside the bubbles has minimal influence on the overall thermal conductivity. The effect of krypton concentration is also negligible compared to pure xenon bubbles. Bubble arrangement is also insignificant unless a relatively wide bubble-free path through the metal exists. However, the area fraction of xenon bubbles has a significant impact on the overall thermal conductivity.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2018.05.032</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bubbles ; Computer simulation ; Finite element ; Finite element analysis ; Finite element method ; Fission ; Fission gas ; Fuels ; Grain boundaries ; Heat conductivity ; Heat flux ; Heat transfer ; Krypton ; Mathematical models ; Scanning electron microscopy ; Size distribution ; Spatial distribution ; Superlattices ; Thermal conductivity ; U-10Mo ; Uranium ; Xenon</subject><ispartof>Journal of nuclear materials, 2018-09, Vol.508, p.159-167</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-3d028f4a9bc8f50ff8e3270dbfc36742aa02446a7b503adfd95b6f331d407ff53</citedby><cites>FETCH-LOGICAL-c337t-3d028f4a9bc8f50ff8e3270dbfc36742aa02446a7b503adfd95b6f331d407ff53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2018.05.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Iasir, A. Rafi M.</creatorcontrib><creatorcontrib>Peters, Nickie J.</creatorcontrib><creatorcontrib>Hammond, Karl D.</creatorcontrib><title>Estimation of effective thermal conductivity in U-10Mo fuels with distributed xenon gas bubbles</title><title>Journal of nuclear materials</title><description>We simulate the influence of distributed xenon gas bubbles on the effective thermal conductivity of irradiated U-10Mo fuel using a two-dimensional finite element method (FEM). The effective thermal conductivity of the inhomogeneous materials is estimated by solving the heat equation on a two-dimensional domain and estimating the mean temperature and heat flux. Bubble size distributions representative of both intra- and inter-granular fission gas bubbles are simulated. A distribution consistent with a gas bubble superlattice is compared to less-ordered bubble distributions in the intra-granular case. For inter-granular bubbles, the bubbles' spatial and size distribution was estimated from a two-dimensional scanning electron microscopy (SEM) image of fission gas bubbles that had collected on grain boundaries. The obtained results are compared with some theoretical models and experimental results. The results indicate that the pressure inside the bubbles has minimal influence on the overall thermal conductivity. The effect of krypton concentration is also negligible compared to pure xenon bubbles. Bubble arrangement is also insignificant unless a relatively wide bubble-free path through the metal exists. However, the area fraction of xenon bubbles has a significant impact on the overall thermal conductivity.</description><subject>Bubbles</subject><subject>Computer simulation</subject><subject>Finite element</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fission</subject><subject>Fission gas</subject><subject>Fuels</subject><subject>Grain boundaries</subject><subject>Heat conductivity</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Krypton</subject><subject>Mathematical models</subject><subject>Scanning electron microscopy</subject><subject>Size distribution</subject><subject>Spatial distribution</subject><subject>Superlattices</subject><subject>Thermal conductivity</subject><subject>U-10Mo</subject><subject>Uranium</subject><subject>Xenon</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QQi4nvEmmcxMVyLFF1Tc2HXI5GEztJOaZKr996a0e1cXDuecy_kQuiVQEiD1fV_2w6g2MpUUSFsCL4HRMzQhbcOKqqVwjiYAlBaMEH6JrmLsAYDPgE-QeIrJ5ajzA_YWG2uNSm5ncFqZsJFrrPygx4Pk0h67AS8LAu8e29GsI_5xaYW1iym4bkxG418z5KIvGXE3dt3axGt0YeU6mpvTnaLl89Pn_LVYfLy8zR8XhWKsSQXTQFtbyVmnWsvB2tYw2oDurGJ1U1EpgVZVLZuOA5Pa6hnvassY0RU01nI2RXfH3m3w36OJSfR-DEN-KSghtK6qhtLs4keXCj7GYKzYhrw-7AUBcWApenFiKQ4sBXCRWebcwzGXR5udM0FE5cygjHYh8xLau38a_gBxXYDB</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Iasir, A. Rafi M.</creator><creator>Peters, Nickie J.</creator><creator>Hammond, Karl D.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201809</creationdate><title>Estimation of effective thermal conductivity in U-10Mo fuels with distributed xenon gas bubbles</title><author>Iasir, A. Rafi M. ; Peters, Nickie J. ; Hammond, Karl D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-3d028f4a9bc8f50ff8e3270dbfc36742aa02446a7b503adfd95b6f331d407ff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bubbles</topic><topic>Computer simulation</topic><topic>Finite element</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fission</topic><topic>Fission gas</topic><topic>Fuels</topic><topic>Grain boundaries</topic><topic>Heat conductivity</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Krypton</topic><topic>Mathematical models</topic><topic>Scanning electron microscopy</topic><topic>Size distribution</topic><topic>Spatial distribution</topic><topic>Superlattices</topic><topic>Thermal conductivity</topic><topic>U-10Mo</topic><topic>Uranium</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iasir, A. Rafi M.</creatorcontrib><creatorcontrib>Peters, Nickie J.</creatorcontrib><creatorcontrib>Hammond, Karl D.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iasir, A. Rafi M.</au><au>Peters, Nickie J.</au><au>Hammond, Karl D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of effective thermal conductivity in U-10Mo fuels with distributed xenon gas bubbles</atitle><jtitle>Journal of nuclear materials</jtitle><date>2018-09</date><risdate>2018</risdate><volume>508</volume><spage>159</spage><epage>167</epage><pages>159-167</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>We simulate the influence of distributed xenon gas bubbles on the effective thermal conductivity of irradiated U-10Mo fuel using a two-dimensional finite element method (FEM). The effective thermal conductivity of the inhomogeneous materials is estimated by solving the heat equation on a two-dimensional domain and estimating the mean temperature and heat flux. Bubble size distributions representative of both intra- and inter-granular fission gas bubbles are simulated. A distribution consistent with a gas bubble superlattice is compared to less-ordered bubble distributions in the intra-granular case. For inter-granular bubbles, the bubbles' spatial and size distribution was estimated from a two-dimensional scanning electron microscopy (SEM) image of fission gas bubbles that had collected on grain boundaries. The obtained results are compared with some theoretical models and experimental results. The results indicate that the pressure inside the bubbles has minimal influence on the overall thermal conductivity. The effect of krypton concentration is also negligible compared to pure xenon bubbles. Bubble arrangement is also insignificant unless a relatively wide bubble-free path through the metal exists. However, the area fraction of xenon bubbles has a significant impact on the overall thermal conductivity.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2018.05.032</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2018-09, Vol.508, p.159-167
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_journals_2112644722
source Elsevier ScienceDirect Journals
subjects Bubbles
Computer simulation
Finite element
Finite element analysis
Finite element method
Fission
Fission gas
Fuels
Grain boundaries
Heat conductivity
Heat flux
Heat transfer
Krypton
Mathematical models
Scanning electron microscopy
Size distribution
Spatial distribution
Superlattices
Thermal conductivity
U-10Mo
Uranium
Xenon
title Estimation of effective thermal conductivity in U-10Mo fuels with distributed xenon gas bubbles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20effective%20thermal%20conductivity%20in%20U-10Mo%20fuels%20with%20distributed%20xenon%20gas%20bubbles&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Iasir,%20A.%20Rafi%20M.&rft.date=2018-09&rft.volume=508&rft.spage=159&rft.epage=167&rft.pages=159-167&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2018.05.032&rft_dat=%3Cproquest_cross%3E2112644722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112644722&rft_id=info:pmid/&rft_els_id=S0022311518302551&rfr_iscdi=true