Quantifying Statistical Interdependence by Message Passing on Graphs—Part I: One-Dimensional Point Processes

We present a novel approach to quantify the statistical interdependence of two time series, referred to as stochastic event synchrony (SES). The first step is to extract “events” from the two given time series. The next step is to try to align events from one time series with events from the other....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2009-08, Vol.21 (8), p.2152-2202
Hauptverfasser: Dauwels, J, Vialatte, F, Weber, T, Cichocki, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2202
container_issue 8
container_start_page 2152
container_title Neural computation
container_volume 21
creator Dauwels, J
Vialatte, F
Weber, T
Cichocki, A
description We present a novel approach to quantify the statistical interdependence of two time series, referred to as stochastic event synchrony (SES). The first step is to extract “events” from the two given time series. The next step is to try to align events from one time series with events from the other. The better the alignment, the more similar the two time series are considered to be. More precisely, the similarity is quantified by the following parameters: time delay, variance of the timing jitter, fraction of noncoincident events, and average similarity of the aligned events. The pairwise alignment and SES parameters are determined by statistical inference. In particular, the SES parameters are computed by maximum a posteriori (MAP) estimation, and the pairwise alignment is obtained by applying the max-product algorithm. This letter deals with one-dimensional point processes; the extension to multidimensional point processes is considered in a companion letter in this issue. By analyzing surrogate data, we demonstrate that SES is able to quantify both timing precision and event reliability more robustly than classical measures can. As an illustration, neuronal spike data generated by the Morris-Lecar neuron model are considered.
doi_str_mv 10.1162/neco.2009.04-08-746
format Article
fullrecord <record><control><sourceid>proquest_mit_j</sourceid><recordid>TN_cdi_proquest_journals_211240215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20124584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-77e7a66ad75e7dc7c4dac169409f34cfa64a22556e214cb3b78a0e3d967de85a3</originalsourceid><addsrcrecordid>eNqF0cFu1DAQBmALUdGl8ARIKEKCW7Zjx7EdbqhAu1JRFwESN2vWmRRXG2drJ4e98RA8IU-Cl11R1AOcfPnmt8c_Y884zDlX4jSQG-YCoJmDLMGUWqoHbMbrCkpjzNeHbAamaUqtlD5mj1O6AQDFoX7EjnmjNEjdzFj4OGEYfbf14br4NOLo0-gdrotFGCm2tKHQUnBUrLbFB0oJr6lYYko7PoTiPOLmW_r5_ccS41gsXhdXgcq3vqeQ_BByzHLwYSyWcXB5mNITdtThOtHTw3nCvrx_9_nsory8Ol-cvbksndRqLLUmjUphq2vSrdNOtui4aiQ0XSVdh0qiEHWtSHDpVtVKGwSq2rxWS6bG6oS92udu4nA7URpt75Oj9RoDDVOySteqUfmv_gcFcCFrIzN8cQ_eDFPMK2bDswHxO63aIxeHlCJ1dhN9j3FrOdhdaXZXmt2VZkFaMDaXlqeeH6KnVU_t3cyhpQxeHgCm3E0XMTif_jjBtVC1NNmd7l3v_3rev67-BUwzsNc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211240215</pqid></control><display><type>article</type><title>Quantifying Statistical Interdependence by Message Passing on Graphs—Part I: One-Dimensional Point Processes</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Dauwels, J ; Vialatte, F ; Weber, T ; Cichocki, A</creator><creatorcontrib>Dauwels, J ; Vialatte, F ; Weber, T ; Cichocki, A</creatorcontrib><description>We present a novel approach to quantify the statistical interdependence of two time series, referred to as stochastic event synchrony (SES). The first step is to extract “events” from the two given time series. The next step is to try to align events from one time series with events from the other. The better the alignment, the more similar the two time series are considered to be. More precisely, the similarity is quantified by the following parameters: time delay, variance of the timing jitter, fraction of noncoincident events, and average similarity of the aligned events. The pairwise alignment and SES parameters are determined by statistical inference. In particular, the SES parameters are computed by maximum a posteriori (MAP) estimation, and the pairwise alignment is obtained by applying the max-product algorithm. This letter deals with one-dimensional point processes; the extension to multidimensional point processes is considered in a companion letter in this issue. By analyzing surrogate data, we demonstrate that SES is able to quantify both timing precision and event reliability more robustly than classical measures can. As an illustration, neuronal spike data generated by the Morris-Lecar neuron model are considered.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco.2009.04-08-746</identifier><identifier>PMID: 19670479</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Action Potentials - physiology ; Algorithms ; Applied sciences ; Artificial intelligence ; Biological and medical sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Inference from stochastic processes; time series analysis ; Learning and adaptive systems ; Letters ; Mathematics ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Miscellaneous ; Models, Neurological ; Models, Statistical ; Neurons ; Neurons - physiology ; Parameter estimation ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Stochastic models ; Time Factors ; Time series</subject><ispartof>Neural computation, 2009-08, Vol.21 (8), p.2152-2202</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright MIT Press Journals Aug 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-77e7a66ad75e7dc7c4dac169409f34cfa64a22556e214cb3b78a0e3d967de85a3</citedby><cites>FETCH-LOGICAL-c476t-77e7a66ad75e7dc7c4dac169409f34cfa64a22556e214cb3b78a0e3d967de85a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco.2009.04-08-746$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,54018,54019</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21726548$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19670479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dauwels, J</creatorcontrib><creatorcontrib>Vialatte, F</creatorcontrib><creatorcontrib>Weber, T</creatorcontrib><creatorcontrib>Cichocki, A</creatorcontrib><title>Quantifying Statistical Interdependence by Message Passing on Graphs—Part I: One-Dimensional Point Processes</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>We present a novel approach to quantify the statistical interdependence of two time series, referred to as stochastic event synchrony (SES). The first step is to extract “events” from the two given time series. The next step is to try to align events from one time series with events from the other. The better the alignment, the more similar the two time series are considered to be. More precisely, the similarity is quantified by the following parameters: time delay, variance of the timing jitter, fraction of noncoincident events, and average similarity of the aligned events. The pairwise alignment and SES parameters are determined by statistical inference. In particular, the SES parameters are computed by maximum a posteriori (MAP) estimation, and the pairwise alignment is obtained by applying the max-product algorithm. This letter deals with one-dimensional point processes; the extension to multidimensional point processes is considered in a companion letter in this issue. By analyzing surrogate data, we demonstrate that SES is able to quantify both timing precision and event reliability more robustly than classical measures can. As an illustration, neuronal spike data generated by the Morris-Lecar neuron model are considered.</description><subject>Action Potentials - physiology</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological and medical sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Learning and adaptive systems</subject><subject>Letters</subject><subject>Mathematics</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Miscellaneous</subject><subject>Models, Neurological</subject><subject>Models, Statistical</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Parameter estimation</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic models</subject><subject>Time Factors</subject><subject>Time series</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0cFu1DAQBmALUdGl8ARIKEKCW7Zjx7EdbqhAu1JRFwESN2vWmRRXG2drJ4e98RA8IU-Cl11R1AOcfPnmt8c_Y884zDlX4jSQG-YCoJmDLMGUWqoHbMbrCkpjzNeHbAamaUqtlD5mj1O6AQDFoX7EjnmjNEjdzFj4OGEYfbf14br4NOLo0-gdrotFGCm2tKHQUnBUrLbFB0oJr6lYYko7PoTiPOLmW_r5_ccS41gsXhdXgcq3vqeQ_BByzHLwYSyWcXB5mNITdtThOtHTw3nCvrx_9_nsory8Ol-cvbksndRqLLUmjUphq2vSrdNOtui4aiQ0XSVdh0qiEHWtSHDpVtVKGwSq2rxWS6bG6oS92udu4nA7URpt75Oj9RoDDVOySteqUfmv_gcFcCFrIzN8cQ_eDFPMK2bDswHxO63aIxeHlCJ1dhN9j3FrOdhdaXZXmt2VZkFaMDaXlqeeH6KnVU_t3cyhpQxeHgCm3E0XMTif_jjBtVC1NNmd7l3v_3rev67-BUwzsNc</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Dauwels, J</creator><creator>Vialatte, F</creator><creator>Weber, T</creator><creator>Cichocki, A</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>Quantifying Statistical Interdependence by Message Passing on Graphs—Part I: One-Dimensional Point Processes</title><author>Dauwels, J ; Vialatte, F ; Weber, T ; Cichocki, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-77e7a66ad75e7dc7c4dac169409f34cfa64a22556e214cb3b78a0e3d967de85a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action Potentials - physiology</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological and medical sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Learning and adaptive systems</topic><topic>Letters</topic><topic>Mathematics</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Miscellaneous</topic><topic>Models, Neurological</topic><topic>Models, Statistical</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Parameter estimation</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic models</topic><topic>Time Factors</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dauwels, J</creatorcontrib><creatorcontrib>Vialatte, F</creatorcontrib><creatorcontrib>Weber, T</creatorcontrib><creatorcontrib>Cichocki, A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dauwels, J</au><au>Vialatte, F</au><au>Weber, T</au><au>Cichocki, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Statistical Interdependence by Message Passing on Graphs—Part I: One-Dimensional Point Processes</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>21</volume><issue>8</issue><spage>2152</spage><epage>2202</epage><pages>2152-2202</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>We present a novel approach to quantify the statistical interdependence of two time series, referred to as stochastic event synchrony (SES). The first step is to extract “events” from the two given time series. The next step is to try to align events from one time series with events from the other. The better the alignment, the more similar the two time series are considered to be. More precisely, the similarity is quantified by the following parameters: time delay, variance of the timing jitter, fraction of noncoincident events, and average similarity of the aligned events. The pairwise alignment and SES parameters are determined by statistical inference. In particular, the SES parameters are computed by maximum a posteriori (MAP) estimation, and the pairwise alignment is obtained by applying the max-product algorithm. This letter deals with one-dimensional point processes; the extension to multidimensional point processes is considered in a companion letter in this issue. By analyzing surrogate data, we demonstrate that SES is able to quantify both timing precision and event reliability more robustly than classical measures can. As an illustration, neuronal spike data generated by the Morris-Lecar neuron model are considered.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>19670479</pmid><doi>10.1162/neco.2009.04-08-746</doi><tpages>51</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2009-08, Vol.21 (8), p.2152-2202
issn 0899-7667
1530-888X
language eng
recordid cdi_proquest_journals_211240215
source MEDLINE; MIT Press Journals
subjects Action Potentials - physiology
Algorithms
Applied sciences
Artificial intelligence
Biological and medical sciences
Computer science
control theory
systems
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
Inference from stochastic processes
time series analysis
Learning and adaptive systems
Letters
Mathematics
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Miscellaneous
Models, Neurological
Models, Statistical
Neurons
Neurons - physiology
Parameter estimation
Probability and statistics
Sciences and techniques of general use
Statistics
Stochastic models
Time Factors
Time series
title Quantifying Statistical Interdependence by Message Passing on Graphs—Part I: One-Dimensional Point Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T05%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Statistical%20Interdependence%20by%20Message%20Passing%20on%20Graphs%E2%80%94Part%20I:%20One-Dimensional%20Point%20Processes&rft.jtitle=Neural%20computation&rft.au=Dauwels,%20J&rft.date=2009-08-01&rft.volume=21&rft.issue=8&rft.spage=2152&rft.epage=2202&rft.pages=2152-2202&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/neco.2009.04-08-746&rft_dat=%3Cproquest_mit_j%3E20124584%3C/proquest_mit_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211240215&rft_id=info:pmid/19670479&rfr_iscdi=true