Ultrathin Metal Crystals: Growth on Supported Graphene Surfaces and Applications
Controlled nucleation and growth of metal clusters in metal deposition processes is a long‐standing issue for thin‐film‐based electronic devices. When metal atoms are deposited on solid surfaces, unintended defects sites always lead to a heterogeneous nucleation, resulting in a spatially nonuniform...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-09, Vol.14 (39), p.e1801529-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 39 |
container_start_page | e1801529 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 14 |
creator | Chae, Soo Sang Jang, Seunghun Lee, Wonki Jung, Du Won Lee, Keun Ho Kim, Jung Dong Jeong, Dohyeon Chang, Hyunju Hwang, Jun Yeon Lee, Jeong‐O. |
description | Controlled nucleation and growth of metal clusters in metal deposition processes is a long‐standing issue for thin‐film‐based electronic devices. When metal atoms are deposited on solid surfaces, unintended defects sites always lead to a heterogeneous nucleation, resulting in a spatially nonuniform nucleation with irregular growth rates for individual nuclei, resulting in a rough film that requires a thicker film to be deposited to reach the percolation threshold. In the present study, it is shown that substrate‐supported graphene promotes the lateral 2D growth of metal atoms on the graphene. Transmission electron microscopy reveals that 2D metallic single crystals are grown epitaxially on supported graphene surfaces while a pristine graphene layer hardly yields any metal nucleation. A surface energy barrier calculation based on density functional theory predicts a suppression of diffusion of metal atoms on electronically perturbed graphene (supported graphene). 2D single Au crystals grown on supported graphene surfaces exhibit unusual near‐infrared plasmonic resonance, and the unique 2D growth of metal crystals and self‐healing nature of graphene lead to the formation of ultrathin, semitransparent, and biodegradable metallic thin films that could be utilized in various biomedical applications.
Ultrathin metal crystals: growth on supported graphene surfaces and applications is reported. Here, it is shown that substrate‐supported graphene promotes the 2D growth of metal on the graphene. 2D single crystals grown on the graphene exhibit unusual near‐infrared plasmonic resonance, and the self‐healing nature of graphene leads to the formation of ultrathin, semitransparent, and biodegradable metallic thin films. |
doi_str_mv | 10.1002/smll.201801529 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2112126004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112126004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3409-1bffee61b2c619e35ec85e7f824bd8c250e3a679291f929cd50bcda6cb3406a43</originalsourceid><addsrcrecordid>eNqFkEFLw0AQhRdRbK1ePUrAc-rObrJJvJWiVUhRqD0vm82EpqRJ3E0o-fduaa1HLzPD43tv4BFyD3QKlLInu6uqKaMQUwhZckHGIID7ImbJ5fkGOiI31m4p5cCC6JqMOIUoDDmMyee66ozqNmXtLbFTlTc3g3XbPnsL0-y7jdfU3qpv28Z0mDtNtRus0UmmUBqtp-rcm7VtVWrVlU1tb8lV4ex4d9oTsn59-Zq_-enH4n0-S33NA5r4kBUFooCMaQEJ8hB1HGJUxCzI8lizkCJXIkpYAoUbOg9ppnMldObsQgV8Qh6Pua1pvnu0ndw2vandS8kAGDBB6YGaHiltGmsNFrI15U6ZQQKVhwLloUB5LtAZHk6xfbbD_Iz_NuaA5AjsywqHf-Lkapmmf-E_V_R9NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112126004</pqid></control><display><type>article</type><title>Ultrathin Metal Crystals: Growth on Supported Graphene Surfaces and Applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chae, Soo Sang ; Jang, Seunghun ; Lee, Wonki ; Jung, Du Won ; Lee, Keun Ho ; Kim, Jung Dong ; Jeong, Dohyeon ; Chang, Hyunju ; Hwang, Jun Yeon ; Lee, Jeong‐O.</creator><creatorcontrib>Chae, Soo Sang ; Jang, Seunghun ; Lee, Wonki ; Jung, Du Won ; Lee, Keun Ho ; Kim, Jung Dong ; Jeong, Dohyeon ; Chang, Hyunju ; Hwang, Jun Yeon ; Lee, Jeong‐O.</creatorcontrib><description>Controlled nucleation and growth of metal clusters in metal deposition processes is a long‐standing issue for thin‐film‐based electronic devices. When metal atoms are deposited on solid surfaces, unintended defects sites always lead to a heterogeneous nucleation, resulting in a spatially nonuniform nucleation with irregular growth rates for individual nuclei, resulting in a rough film that requires a thicker film to be deposited to reach the percolation threshold. In the present study, it is shown that substrate‐supported graphene promotes the lateral 2D growth of metal atoms on the graphene. Transmission electron microscopy reveals that 2D metallic single crystals are grown epitaxially on supported graphene surfaces while a pristine graphene layer hardly yields any metal nucleation. A surface energy barrier calculation based on density functional theory predicts a suppression of diffusion of metal atoms on electronically perturbed graphene (supported graphene). 2D single Au crystals grown on supported graphene surfaces exhibit unusual near‐infrared plasmonic resonance, and the unique 2D growth of metal crystals and self‐healing nature of graphene lead to the formation of ultrathin, semitransparent, and biodegradable metallic thin films that could be utilized in various biomedical applications.
Ultrathin metal crystals: growth on supported graphene surfaces and applications is reported. Here, it is shown that substrate‐supported graphene promotes the 2D growth of metal on the graphene. 2D single crystals grown on the graphene exhibit unusual near‐infrared plasmonic resonance, and the self‐healing nature of graphene leads to the formation of ultrathin, semitransparent, and biodegradable metallic thin films.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201801529</identifier><identifier>PMID: 30175531</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biodegradability ; Biomedical materials ; Crystal defects ; Crystal growth ; Density functional theory ; Diffusion barriers ; Electronic devices ; Epitaxial growth ; Gold ; Graphene ; Metal clusters ; Metal crystals ; Metals ; Nanotechnology ; Nucleation ; Percolation ; photothermal effect ; semitransparent conducting films ; Single crystals ; Solid surfaces ; Substrates ; Surface energy ; Thin films ; Transmission electron microscopy</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-09, Vol.14 (39), p.e1801529-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3409-1bffee61b2c619e35ec85e7f824bd8c250e3a679291f929cd50bcda6cb3406a43</citedby><cites>FETCH-LOGICAL-c3409-1bffee61b2c619e35ec85e7f824bd8c250e3a679291f929cd50bcda6cb3406a43</cites><orcidid>0000-0002-7343-4892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201801529$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201801529$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30175531$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chae, Soo Sang</creatorcontrib><creatorcontrib>Jang, Seunghun</creatorcontrib><creatorcontrib>Lee, Wonki</creatorcontrib><creatorcontrib>Jung, Du Won</creatorcontrib><creatorcontrib>Lee, Keun Ho</creatorcontrib><creatorcontrib>Kim, Jung Dong</creatorcontrib><creatorcontrib>Jeong, Dohyeon</creatorcontrib><creatorcontrib>Chang, Hyunju</creatorcontrib><creatorcontrib>Hwang, Jun Yeon</creatorcontrib><creatorcontrib>Lee, Jeong‐O.</creatorcontrib><title>Ultrathin Metal Crystals: Growth on Supported Graphene Surfaces and Applications</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Controlled nucleation and growth of metal clusters in metal deposition processes is a long‐standing issue for thin‐film‐based electronic devices. When metal atoms are deposited on solid surfaces, unintended defects sites always lead to a heterogeneous nucleation, resulting in a spatially nonuniform nucleation with irregular growth rates for individual nuclei, resulting in a rough film that requires a thicker film to be deposited to reach the percolation threshold. In the present study, it is shown that substrate‐supported graphene promotes the lateral 2D growth of metal atoms on the graphene. Transmission electron microscopy reveals that 2D metallic single crystals are grown epitaxially on supported graphene surfaces while a pristine graphene layer hardly yields any metal nucleation. A surface energy barrier calculation based on density functional theory predicts a suppression of diffusion of metal atoms on electronically perturbed graphene (supported graphene). 2D single Au crystals grown on supported graphene surfaces exhibit unusual near‐infrared plasmonic resonance, and the unique 2D growth of metal crystals and self‐healing nature of graphene lead to the formation of ultrathin, semitransparent, and biodegradable metallic thin films that could be utilized in various biomedical applications.
Ultrathin metal crystals: growth on supported graphene surfaces and applications is reported. Here, it is shown that substrate‐supported graphene promotes the 2D growth of metal on the graphene. 2D single crystals grown on the graphene exhibit unusual near‐infrared plasmonic resonance, and the self‐healing nature of graphene leads to the formation of ultrathin, semitransparent, and biodegradable metallic thin films.</description><subject>Biodegradability</subject><subject>Biomedical materials</subject><subject>Crystal defects</subject><subject>Crystal growth</subject><subject>Density functional theory</subject><subject>Diffusion barriers</subject><subject>Electronic devices</subject><subject>Epitaxial growth</subject><subject>Gold</subject><subject>Graphene</subject><subject>Metal clusters</subject><subject>Metal crystals</subject><subject>Metals</subject><subject>Nanotechnology</subject><subject>Nucleation</subject><subject>Percolation</subject><subject>photothermal effect</subject><subject>semitransparent conducting films</subject><subject>Single crystals</subject><subject>Solid surfaces</subject><subject>Substrates</subject><subject>Surface energy</subject><subject>Thin films</subject><subject>Transmission electron microscopy</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AQhRdRbK1ePUrAc-rObrJJvJWiVUhRqD0vm82EpqRJ3E0o-fduaa1HLzPD43tv4BFyD3QKlLInu6uqKaMQUwhZckHGIID7ImbJ5fkGOiI31m4p5cCC6JqMOIUoDDmMyee66ozqNmXtLbFTlTc3g3XbPnsL0-y7jdfU3qpv28Z0mDtNtRus0UmmUBqtp-rcm7VtVWrVlU1tb8lV4ex4d9oTsn59-Zq_-enH4n0-S33NA5r4kBUFooCMaQEJ8hB1HGJUxCzI8lizkCJXIkpYAoUbOg9ppnMldObsQgV8Qh6Pua1pvnu0ndw2vandS8kAGDBB6YGaHiltGmsNFrI15U6ZQQKVhwLloUB5LtAZHk6xfbbD_Iz_NuaA5AjsywqHf-Lkapmmf-E_V_R9NQ</recordid><startdate>20180927</startdate><enddate>20180927</enddate><creator>Chae, Soo Sang</creator><creator>Jang, Seunghun</creator><creator>Lee, Wonki</creator><creator>Jung, Du Won</creator><creator>Lee, Keun Ho</creator><creator>Kim, Jung Dong</creator><creator>Jeong, Dohyeon</creator><creator>Chang, Hyunju</creator><creator>Hwang, Jun Yeon</creator><creator>Lee, Jeong‐O.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7343-4892</orcidid></search><sort><creationdate>20180927</creationdate><title>Ultrathin Metal Crystals: Growth on Supported Graphene Surfaces and Applications</title><author>Chae, Soo Sang ; Jang, Seunghun ; Lee, Wonki ; Jung, Du Won ; Lee, Keun Ho ; Kim, Jung Dong ; Jeong, Dohyeon ; Chang, Hyunju ; Hwang, Jun Yeon ; Lee, Jeong‐O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3409-1bffee61b2c619e35ec85e7f824bd8c250e3a679291f929cd50bcda6cb3406a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biodegradability</topic><topic>Biomedical materials</topic><topic>Crystal defects</topic><topic>Crystal growth</topic><topic>Density functional theory</topic><topic>Diffusion barriers</topic><topic>Electronic devices</topic><topic>Epitaxial growth</topic><topic>Gold</topic><topic>Graphene</topic><topic>Metal clusters</topic><topic>Metal crystals</topic><topic>Metals</topic><topic>Nanotechnology</topic><topic>Nucleation</topic><topic>Percolation</topic><topic>photothermal effect</topic><topic>semitransparent conducting films</topic><topic>Single crystals</topic><topic>Solid surfaces</topic><topic>Substrates</topic><topic>Surface energy</topic><topic>Thin films</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chae, Soo Sang</creatorcontrib><creatorcontrib>Jang, Seunghun</creatorcontrib><creatorcontrib>Lee, Wonki</creatorcontrib><creatorcontrib>Jung, Du Won</creatorcontrib><creatorcontrib>Lee, Keun Ho</creatorcontrib><creatorcontrib>Kim, Jung Dong</creatorcontrib><creatorcontrib>Jeong, Dohyeon</creatorcontrib><creatorcontrib>Chang, Hyunju</creatorcontrib><creatorcontrib>Hwang, Jun Yeon</creatorcontrib><creatorcontrib>Lee, Jeong‐O.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chae, Soo Sang</au><au>Jang, Seunghun</au><au>Lee, Wonki</au><au>Jung, Du Won</au><au>Lee, Keun Ho</au><au>Kim, Jung Dong</au><au>Jeong, Dohyeon</au><au>Chang, Hyunju</au><au>Hwang, Jun Yeon</au><au>Lee, Jeong‐O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin Metal Crystals: Growth on Supported Graphene Surfaces and Applications</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-09-27</date><risdate>2018</risdate><volume>14</volume><issue>39</issue><spage>e1801529</spage><epage>n/a</epage><pages>e1801529-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Controlled nucleation and growth of metal clusters in metal deposition processes is a long‐standing issue for thin‐film‐based electronic devices. When metal atoms are deposited on solid surfaces, unintended defects sites always lead to a heterogeneous nucleation, resulting in a spatially nonuniform nucleation with irregular growth rates for individual nuclei, resulting in a rough film that requires a thicker film to be deposited to reach the percolation threshold. In the present study, it is shown that substrate‐supported graphene promotes the lateral 2D growth of metal atoms on the graphene. Transmission electron microscopy reveals that 2D metallic single crystals are grown epitaxially on supported graphene surfaces while a pristine graphene layer hardly yields any metal nucleation. A surface energy barrier calculation based on density functional theory predicts a suppression of diffusion of metal atoms on electronically perturbed graphene (supported graphene). 2D single Au crystals grown on supported graphene surfaces exhibit unusual near‐infrared plasmonic resonance, and the unique 2D growth of metal crystals and self‐healing nature of graphene lead to the formation of ultrathin, semitransparent, and biodegradable metallic thin films that could be utilized in various biomedical applications.
Ultrathin metal crystals: growth on supported graphene surfaces and applications is reported. Here, it is shown that substrate‐supported graphene promotes the 2D growth of metal on the graphene. 2D single crystals grown on the graphene exhibit unusual near‐infrared plasmonic resonance, and the self‐healing nature of graphene leads to the formation of ultrathin, semitransparent, and biodegradable metallic thin films.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30175531</pmid><doi>10.1002/smll.201801529</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7343-4892</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2018-09, Vol.14 (39), p.e1801529-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_journals_2112126004 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biodegradability Biomedical materials Crystal defects Crystal growth Density functional theory Diffusion barriers Electronic devices Epitaxial growth Gold Graphene Metal clusters Metal crystals Metals Nanotechnology Nucleation Percolation photothermal effect semitransparent conducting films Single crystals Solid surfaces Substrates Surface energy Thin films Transmission electron microscopy |
title | Ultrathin Metal Crystals: Growth on Supported Graphene Surfaces and Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20Metal%20Crystals:%20Growth%20on%20Supported%20Graphene%20Surfaces%20and%20Applications&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chae,%20Soo%20Sang&rft.date=2018-09-27&rft.volume=14&rft.issue=39&rft.spage=e1801529&rft.epage=n/a&rft.pages=e1801529-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201801529&rft_dat=%3Cproquest_cross%3E2112126004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112126004&rft_id=info:pmid/30175531&rfr_iscdi=true |