Chebyshev Approximation by the Sum of the Polynomial and Logarithmic Expression with Hermite Interpolation

The authors establish the condition for the existence of the Chebyshev approximation by the sum of the polynomial and logarithmic expression with the least absolute error and Hermite interpolation at the end points of the interval. The method is proposed for determining the parameters of such Chebys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2018-09, Vol.54 (5), p.765-770
Hauptverfasser: Malachivskyy, P. S., Pizyur, Ya. V., Andrunyk, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 770
container_issue 5
container_start_page 765
container_title Cybernetics and systems analysis
container_volume 54
creator Malachivskyy, P. S.
Pizyur, Ya. V.
Andrunyk, V. A.
description The authors establish the condition for the existence of the Chebyshev approximation by the sum of the polynomial and logarithmic expression with the least absolute error and Hermite interpolation at the end points of the interval. The method is proposed for determining the parameters of such Chebyshev approximation.
doi_str_mv 10.1007/s10559-018-0078-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2111964869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557836842</galeid><sourcerecordid>A557836842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-7c8fe0b56db4de82e21189f9b4c13af9a7954eca1a45fae0e7653084ae9fb2613</originalsourceid><addsrcrecordid>eNp1kU1r4zAQhs2yhc2m_QF7E-xpD04ly7KlYwjtNhBo6cdZyM4ocbAtr6S0yb_fSbyw5FAE0mh43hmN3iT5weiMUVreBkaFUCllMsUrbl-SCRMlTyXn5VeMaUFTylXxLfkewo5SyhGbJLvFFqpj2MI7mQ-Dd4emM7FxPamOJG6BvOw74uw5fHLtsXddY1pi-jVZuY3xTdx2TU3uDoOHEE66D0yRB_BdE4Es-wh-cO255HVyZU0b4ObfOU3e7u9eFw_p6vH3cjFfpTWXKqZlLS3QShTrKl-DzCBjTCqrqrxm3FhlSiVyqA0zubAGKJSF4FTmBpStsoLxafJzrIvj_NlDiHrn9r7HlhpLMVXkslBIzUZqY1rQTW9d9KbGtQacyPVgG8zPhSglL2SeoeDXhQCZCIe4MfsQ9PLl-ZJlI1t7F4IHqwePH-uPmlF98kuPfmn0S5_80hQ12agJyPYb8P-f_bnoLw5wmLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111964869</pqid></control><display><type>article</type><title>Chebyshev Approximation by the Sum of the Polynomial and Logarithmic Expression with Hermite Interpolation</title><source>SpringerLink Journals</source><creator>Malachivskyy, P. S. ; Pizyur, Ya. V. ; Andrunyk, V. A.</creator><creatorcontrib>Malachivskyy, P. S. ; Pizyur, Ya. V. ; Andrunyk, V. A.</creatorcontrib><description>The authors establish the condition for the existence of the Chebyshev approximation by the sum of the polynomial and logarithmic expression with the least absolute error and Hermite interpolation at the end points of the interval. The method is proposed for determining the parameters of such Chebyshev approximation.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-018-0078-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Artificial Intelligence ; Chebyshev approximation ; Control ; Interpolation ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Polynomials ; Processor Architectures ; Software Engineering/Programming and Operating Systems ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2018-09, Vol.54 (5), p.765-770</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Cybernetics and Systems Analysis is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-7c8fe0b56db4de82e21189f9b4c13af9a7954eca1a45fae0e7653084ae9fb2613</citedby><cites>FETCH-LOGICAL-c389t-7c8fe0b56db4de82e21189f9b4c13af9a7954eca1a45fae0e7653084ae9fb2613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10559-018-0078-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10559-018-0078-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Malachivskyy, P. S.</creatorcontrib><creatorcontrib>Pizyur, Ya. V.</creatorcontrib><creatorcontrib>Andrunyk, V. A.</creatorcontrib><title>Chebyshev Approximation by the Sum of the Polynomial and Logarithmic Expression with Hermite Interpolation</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>The authors establish the condition for the existence of the Chebyshev approximation by the sum of the polynomial and logarithmic expression with the least absolute error and Hermite interpolation at the end points of the interval. The method is proposed for determining the parameters of such Chebyshev approximation.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Chebyshev approximation</subject><subject>Control</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Processor Architectures</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1r4zAQhs2yhc2m_QF7E-xpD04ly7KlYwjtNhBo6cdZyM4ocbAtr6S0yb_fSbyw5FAE0mh43hmN3iT5weiMUVreBkaFUCllMsUrbl-SCRMlTyXn5VeMaUFTylXxLfkewo5SyhGbJLvFFqpj2MI7mQ-Dd4emM7FxPamOJG6BvOw74uw5fHLtsXddY1pi-jVZuY3xTdx2TU3uDoOHEE66D0yRB_BdE4Es-wh-cO255HVyZU0b4ObfOU3e7u9eFw_p6vH3cjFfpTWXKqZlLS3QShTrKl-DzCBjTCqrqrxm3FhlSiVyqA0zubAGKJSF4FTmBpStsoLxafJzrIvj_NlDiHrn9r7HlhpLMVXkslBIzUZqY1rQTW9d9KbGtQacyPVgG8zPhSglL2SeoeDXhQCZCIe4MfsQ9PLl-ZJlI1t7F4IHqwePH-uPmlF98kuPfmn0S5_80hQ12agJyPYb8P-f_bnoLw5wmLA</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Malachivskyy, P. S.</creator><creator>Pizyur, Ya. V.</creator><creator>Andrunyk, V. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20180901</creationdate><title>Chebyshev Approximation by the Sum of the Polynomial and Logarithmic Expression with Hermite Interpolation</title><author>Malachivskyy, P. S. ; Pizyur, Ya. V. ; Andrunyk, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-7c8fe0b56db4de82e21189f9b4c13af9a7954eca1a45fae0e7653084ae9fb2613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Chebyshev approximation</topic><topic>Control</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Processor Architectures</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malachivskyy, P. S.</creatorcontrib><creatorcontrib>Pizyur, Ya. V.</creatorcontrib><creatorcontrib>Andrunyk, V. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malachivskyy, P. S.</au><au>Pizyur, Ya. V.</au><au>Andrunyk, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chebyshev Approximation by the Sum of the Polynomial and Logarithmic Expression with Hermite Interpolation</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>54</volume><issue>5</issue><spage>765</spage><epage>770</epage><pages>765-770</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>The authors establish the condition for the existence of the Chebyshev approximation by the sum of the polynomial and logarithmic expression with the least absolute error and Hermite interpolation at the end points of the interval. The method is proposed for determining the parameters of such Chebyshev approximation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10559-018-0078-0</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1060-0396
ispartof Cybernetics and systems analysis, 2018-09, Vol.54 (5), p.765-770
issn 1060-0396
1573-8337
language eng
recordid cdi_proquest_journals_2111964869
source SpringerLink Journals
subjects Approximation
Artificial Intelligence
Chebyshev approximation
Control
Interpolation
Mathematical analysis
Mathematics
Mathematics and Statistics
Polynomials
Processor Architectures
Software Engineering/Programming and Operating Systems
Systems Theory
title Chebyshev Approximation by the Sum of the Polynomial and Logarithmic Expression with Hermite Interpolation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chebyshev%20Approximation%20by%20the%20Sum%20of%20the%20Polynomial%20and%20Logarithmic%20Expression%20with%20Hermite%20Interpolation&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Malachivskyy,%20P.%20S.&rft.date=2018-09-01&rft.volume=54&rft.issue=5&rft.spage=765&rft.epage=770&rft.pages=765-770&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-018-0078-0&rft_dat=%3Cgale_proqu%3EA557836842%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111964869&rft_id=info:pmid/&rft_galeid=A557836842&rfr_iscdi=true