Thermal Annealing Influence on the Properties of Heterostructure Based on 2 at.%Eu Doped SnO2 and Cu1.8S

Aiming at optoelectronic applications, a heterostructure based on Eu-doped tin oxide (SnO 2 ) and copper sulfide (Cu 2− x S) is built. SnO 2 thin films doped with 2 at.% Eu were obtained by the sol–gel dip-coating and spin-coating techniques, whereas the Cu 2− x S film was obtained by resistive evap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2018-12, Vol.47 (12), p.7463-7471
Hauptverfasser: Lima, João V. M., Boratto, Miguel H., dos Santos, Stevan B. O., Scalvi, Luis V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7471
container_issue 12
container_start_page 7463
container_title Journal of electronic materials
container_volume 47
creator Lima, João V. M.
Boratto, Miguel H.
dos Santos, Stevan B. O.
Scalvi, Luis V. A.
description Aiming at optoelectronic applications, a heterostructure based on Eu-doped tin oxide (SnO 2 ) and copper sulfide (Cu 2− x S) is built. SnO 2 thin films doped with 2 at.% Eu were obtained by the sol–gel dip-coating and spin-coating techniques, whereas the Cu 2− x S film was obtained by resistive evaporation. Samples were prepared using three distinct thermal annealing temperatures of the SnO 2 bottom layer: 150°C, 250°C and 500°C. Transmittance and absorption spectra of the heterostructure shows high transparency in the visible to near infrared range (600–1800 nm), and considering the dominance of SnO 2 on light absorption, it was possible to evaluate the sample indirect bandgap around 3.5 eV, independently of the thermal annealing temperature. Cyclic voltammetry and impedance spectroscopy, in conjunction with calculation of the hysteresis index, show that the heterostructure presents a behavior highly capacitive, and the higher annealing temperature leads to higher capacitance at low frequencies, similar to the observed qualitative behavior of supercapacitive devices. Besides, the sample with the SnO 2 bottom layer annealed at 500°C yielded a higher current density.
doi_str_mv 10.1007/s11664-018-6687-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111958038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111958038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2316-e7370891f745883d2d62694233874002c7dfa7ff4ad0e65bed7f620f19a22ed3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4C4gLqfmJjNJuqy12kKhQrtwF-Lkpj-0mZrMLHwbn8Unc8oIrlzdzXfO4X6E3AIbAGPqIQFImWcMdCalVpk8Iz0ocpGBlm_npMeEhKzgorgkVyntGIMCNPTIdrXBeLB7OgoB7X4b1nQW_L7BUCKtAq03SF9jdcRYbzHRytMp1hirVMemrJuI9NEmdCeUf3_ZenA_aehTyzu6DAtObXB03MBAL6_Jhbf7hDe_t09Wz5PVeJrNFy-z8WielVyAzFAJxfQQvMoLrYXjTnI5zLkQWuWM8VI5b5X3uXUMZfGOTnnJmYeh5Ryd6JO7rvYYq48GU212VRNDu2g4AAwLzYRuKeiosn0lRfTmGLcHGz8NMHMSajqhphVqTkKNbDO8y6SWDWuMf83_h34AztZ3IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111958038</pqid></control><display><type>article</type><title>Thermal Annealing Influence on the Properties of Heterostructure Based on 2 at.%Eu Doped SnO2 and Cu1.8S</title><source>Springer</source><creator>Lima, João V. M. ; Boratto, Miguel H. ; dos Santos, Stevan B. O. ; Scalvi, Luis V. A.</creator><creatorcontrib>Lima, João V. M. ; Boratto, Miguel H. ; dos Santos, Stevan B. O. ; Scalvi, Luis V. A.</creatorcontrib><description>Aiming at optoelectronic applications, a heterostructure based on Eu-doped tin oxide (SnO 2 ) and copper sulfide (Cu 2− x S) is built. SnO 2 thin films doped with 2 at.% Eu were obtained by the sol–gel dip-coating and spin-coating techniques, whereas the Cu 2− x S film was obtained by resistive evaporation. Samples were prepared using three distinct thermal annealing temperatures of the SnO 2 bottom layer: 150°C, 250°C and 500°C. Transmittance and absorption spectra of the heterostructure shows high transparency in the visible to near infrared range (600–1800 nm), and considering the dominance of SnO 2 on light absorption, it was possible to evaluate the sample indirect bandgap around 3.5 eV, independently of the thermal annealing temperature. Cyclic voltammetry and impedance spectroscopy, in conjunction with calculation of the hysteresis index, show that the heterostructure presents a behavior highly capacitive, and the higher annealing temperature leads to higher capacitance at low frequencies, similar to the observed qualitative behavior of supercapacitive devices. Besides, the sample with the SnO 2 bottom layer annealed at 500°C yielded a higher current density.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-018-6687-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption spectra ; Annealing ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper sulfides ; Dip coatings ; Electromagnetic absorption ; Electronics and Microelectronics ; Heterostructures ; Immersion coating ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Optoelectronics ; Radioactivity ; Sol-gel processes ; Solid State Physics ; Spectrum analysis ; Spin coating ; Thin films ; Tin dioxide ; Tin oxides</subject><ispartof>Journal of electronic materials, 2018-12, Vol.47 (12), p.7463-7471</ispartof><rights>The Minerals, Metals &amp; Materials Society 2018</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2316-e7370891f745883d2d62694233874002c7dfa7ff4ad0e65bed7f620f19a22ed3</citedby><cites>FETCH-LOGICAL-c2316-e7370891f745883d2d62694233874002c7dfa7ff4ad0e65bed7f620f19a22ed3</cites><orcidid>0000-0001-5762-6424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-018-6687-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-018-6687-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lima, João V. M.</creatorcontrib><creatorcontrib>Boratto, Miguel H.</creatorcontrib><creatorcontrib>dos Santos, Stevan B. O.</creatorcontrib><creatorcontrib>Scalvi, Luis V. A.</creatorcontrib><title>Thermal Annealing Influence on the Properties of Heterostructure Based on 2 at.%Eu Doped SnO2 and Cu1.8S</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Aiming at optoelectronic applications, a heterostructure based on Eu-doped tin oxide (SnO 2 ) and copper sulfide (Cu 2− x S) is built. SnO 2 thin films doped with 2 at.% Eu were obtained by the sol–gel dip-coating and spin-coating techniques, whereas the Cu 2− x S film was obtained by resistive evaporation. Samples were prepared using three distinct thermal annealing temperatures of the SnO 2 bottom layer: 150°C, 250°C and 500°C. Transmittance and absorption spectra of the heterostructure shows high transparency in the visible to near infrared range (600–1800 nm), and considering the dominance of SnO 2 on light absorption, it was possible to evaluate the sample indirect bandgap around 3.5 eV, independently of the thermal annealing temperature. Cyclic voltammetry and impedance spectroscopy, in conjunction with calculation of the hysteresis index, show that the heterostructure presents a behavior highly capacitive, and the higher annealing temperature leads to higher capacitance at low frequencies, similar to the observed qualitative behavior of supercapacitive devices. Besides, the sample with the SnO 2 bottom layer annealed at 500°C yielded a higher current density.</description><subject>Absorption spectra</subject><subject>Annealing</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper sulfides</subject><subject>Dip coatings</subject><subject>Electromagnetic absorption</subject><subject>Electronics and Microelectronics</subject><subject>Heterostructures</subject><subject>Immersion coating</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronics</subject><subject>Radioactivity</subject><subject>Sol-gel processes</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Spin coating</subject><subject>Thin films</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1KAzEUhYMoWKsP4C4gLqfmJjNJuqy12kKhQrtwF-Lkpj-0mZrMLHwbn8Unc8oIrlzdzXfO4X6E3AIbAGPqIQFImWcMdCalVpk8Iz0ocpGBlm_npMeEhKzgorgkVyntGIMCNPTIdrXBeLB7OgoB7X4b1nQW_L7BUCKtAq03SF9jdcRYbzHRytMp1hirVMemrJuI9NEmdCeUf3_ZenA_aehTyzu6DAtObXB03MBAL6_Jhbf7hDe_t09Wz5PVeJrNFy-z8WielVyAzFAJxfQQvMoLrYXjTnI5zLkQWuWM8VI5b5X3uXUMZfGOTnnJmYeh5Ryd6JO7rvYYq48GU212VRNDu2g4AAwLzYRuKeiosn0lRfTmGLcHGz8NMHMSajqhphVqTkKNbDO8y6SWDWuMf83_h34AztZ3IA</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Lima, João V. M.</creator><creator>Boratto, Miguel H.</creator><creator>dos Santos, Stevan B. O.</creator><creator>Scalvi, Luis V. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-5762-6424</orcidid></search><sort><creationdate>20181201</creationdate><title>Thermal Annealing Influence on the Properties of Heterostructure Based on 2 at.%Eu Doped SnO2 and Cu1.8S</title><author>Lima, João V. M. ; Boratto, Miguel H. ; dos Santos, Stevan B. O. ; Scalvi, Luis V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2316-e7370891f745883d2d62694233874002c7dfa7ff4ad0e65bed7f620f19a22ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption spectra</topic><topic>Annealing</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper sulfides</topic><topic>Dip coatings</topic><topic>Electromagnetic absorption</topic><topic>Electronics and Microelectronics</topic><topic>Heterostructures</topic><topic>Immersion coating</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronics</topic><topic>Radioactivity</topic><topic>Sol-gel processes</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Spin coating</topic><topic>Thin films</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, João V. M.</creatorcontrib><creatorcontrib>Boratto, Miguel H.</creatorcontrib><creatorcontrib>dos Santos, Stevan B. O.</creatorcontrib><creatorcontrib>Scalvi, Luis V. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, João V. M.</au><au>Boratto, Miguel H.</au><au>dos Santos, Stevan B. O.</au><au>Scalvi, Luis V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Annealing Influence on the Properties of Heterostructure Based on 2 at.%Eu Doped SnO2 and Cu1.8S</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>47</volume><issue>12</issue><spage>7463</spage><epage>7471</epage><pages>7463-7471</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Aiming at optoelectronic applications, a heterostructure based on Eu-doped tin oxide (SnO 2 ) and copper sulfide (Cu 2− x S) is built. SnO 2 thin films doped with 2 at.% Eu were obtained by the sol–gel dip-coating and spin-coating techniques, whereas the Cu 2− x S film was obtained by resistive evaporation. Samples were prepared using three distinct thermal annealing temperatures of the SnO 2 bottom layer: 150°C, 250°C and 500°C. Transmittance and absorption spectra of the heterostructure shows high transparency in the visible to near infrared range (600–1800 nm), and considering the dominance of SnO 2 on light absorption, it was possible to evaluate the sample indirect bandgap around 3.5 eV, independently of the thermal annealing temperature. Cyclic voltammetry and impedance spectroscopy, in conjunction with calculation of the hysteresis index, show that the heterostructure presents a behavior highly capacitive, and the higher annealing temperature leads to higher capacitance at low frequencies, similar to the observed qualitative behavior of supercapacitive devices. Besides, the sample with the SnO 2 bottom layer annealed at 500°C yielded a higher current density.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-018-6687-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5762-6424</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2018-12, Vol.47 (12), p.7463-7471
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2111958038
source Springer
subjects Absorption spectra
Annealing
Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper sulfides
Dip coatings
Electromagnetic absorption
Electronics and Microelectronics
Heterostructures
Immersion coating
Instrumentation
Materials Science
Optical and Electronic Materials
Optoelectronics
Radioactivity
Sol-gel processes
Solid State Physics
Spectrum analysis
Spin coating
Thin films
Tin dioxide
Tin oxides
title Thermal Annealing Influence on the Properties of Heterostructure Based on 2 at.%Eu Doped SnO2 and Cu1.8S
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Annealing%20Influence%20on%20the%20Properties%20of%20Heterostructure%20Based%20on%202%C2%A0at.%25Eu%20Doped%20SnO2%20and%20Cu1.8S&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Lima,%20Jo%C3%A3o%20V.%20M.&rft.date=2018-12-01&rft.volume=47&rft.issue=12&rft.spage=7463&rft.epage=7471&rft.pages=7463-7471&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-018-6687-6&rft_dat=%3Cproquest_cross%3E2111958038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111958038&rft_id=info:pmid/&rfr_iscdi=true