Thermal Annealing Influence on the Properties of Heterostructure Based on 2 at.%Eu Doped SnO2 and Cu1.8S
Aiming at optoelectronic applications, a heterostructure based on Eu-doped tin oxide (SnO 2 ) and copper sulfide (Cu 2− x S) is built. SnO 2 thin films doped with 2 at.% Eu were obtained by the sol–gel dip-coating and spin-coating techniques, whereas the Cu 2− x S film was obtained by resistive evap...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2018-12, Vol.47 (12), p.7463-7471 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7471 |
---|---|
container_issue | 12 |
container_start_page | 7463 |
container_title | Journal of electronic materials |
container_volume | 47 |
creator | Lima, João V. M. Boratto, Miguel H. dos Santos, Stevan B. O. Scalvi, Luis V. A. |
description | Aiming at optoelectronic applications, a heterostructure based on Eu-doped tin oxide (SnO
2
) and copper sulfide (Cu
2−
x
S) is built. SnO
2
thin films doped with 2 at.% Eu were obtained by the sol–gel dip-coating and spin-coating techniques, whereas the Cu
2−
x
S film was obtained by resistive evaporation. Samples were prepared using three distinct thermal annealing temperatures of the SnO
2
bottom layer: 150°C, 250°C and 500°C. Transmittance and absorption spectra of the heterostructure shows high transparency in the visible to near infrared range (600–1800 nm), and considering the dominance of SnO
2
on light absorption, it was possible to evaluate the sample indirect bandgap around 3.5 eV, independently of the thermal annealing temperature. Cyclic voltammetry and impedance spectroscopy, in conjunction with calculation of the hysteresis index, show that the heterostructure presents a behavior highly capacitive, and the higher annealing temperature leads to higher capacitance at low frequencies, similar to the observed qualitative behavior of supercapacitive devices. Besides, the sample with the SnO
2
bottom layer annealed at 500°C yielded a higher current density. |
doi_str_mv | 10.1007/s11664-018-6687-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111958038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111958038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2316-e7370891f745883d2d62694233874002c7dfa7ff4ad0e65bed7f620f19a22ed3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4C4gLqfmJjNJuqy12kKhQrtwF-Lkpj-0mZrMLHwbn8Unc8oIrlzdzXfO4X6E3AIbAGPqIQFImWcMdCalVpk8Iz0ocpGBlm_npMeEhKzgorgkVyntGIMCNPTIdrXBeLB7OgoB7X4b1nQW_L7BUCKtAq03SF9jdcRYbzHRytMp1hirVMemrJuI9NEmdCeUf3_ZenA_aehTyzu6DAtObXB03MBAL6_Jhbf7hDe_t09Wz5PVeJrNFy-z8WielVyAzFAJxfQQvMoLrYXjTnI5zLkQWuWM8VI5b5X3uXUMZfGOTnnJmYeh5Ryd6JO7rvYYq48GU212VRNDu2g4AAwLzYRuKeiosn0lRfTmGLcHGz8NMHMSajqhphVqTkKNbDO8y6SWDWuMf83_h34AztZ3IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111958038</pqid></control><display><type>article</type><title>Thermal Annealing Influence on the Properties of Heterostructure Based on 2 at.%Eu Doped SnO2 and Cu1.8S</title><source>Springer</source><creator>Lima, João V. M. ; Boratto, Miguel H. ; dos Santos, Stevan B. O. ; Scalvi, Luis V. A.</creator><creatorcontrib>Lima, João V. M. ; Boratto, Miguel H. ; dos Santos, Stevan B. O. ; Scalvi, Luis V. A.</creatorcontrib><description>Aiming at optoelectronic applications, a heterostructure based on Eu-doped tin oxide (SnO
2
) and copper sulfide (Cu
2−
x
S) is built. SnO
2
thin films doped with 2 at.% Eu were obtained by the sol–gel dip-coating and spin-coating techniques, whereas the Cu
2−
x
S film was obtained by resistive evaporation. Samples were prepared using three distinct thermal annealing temperatures of the SnO
2
bottom layer: 150°C, 250°C and 500°C. Transmittance and absorption spectra of the heterostructure shows high transparency in the visible to near infrared range (600–1800 nm), and considering the dominance of SnO
2
on light absorption, it was possible to evaluate the sample indirect bandgap around 3.5 eV, independently of the thermal annealing temperature. Cyclic voltammetry and impedance spectroscopy, in conjunction with calculation of the hysteresis index, show that the heterostructure presents a behavior highly capacitive, and the higher annealing temperature leads to higher capacitance at low frequencies, similar to the observed qualitative behavior of supercapacitive devices. Besides, the sample with the SnO
2
bottom layer annealed at 500°C yielded a higher current density.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-018-6687-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption spectra ; Annealing ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper sulfides ; Dip coatings ; Electromagnetic absorption ; Electronics and Microelectronics ; Heterostructures ; Immersion coating ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Optoelectronics ; Radioactivity ; Sol-gel processes ; Solid State Physics ; Spectrum analysis ; Spin coating ; Thin films ; Tin dioxide ; Tin oxides</subject><ispartof>Journal of electronic materials, 2018-12, Vol.47 (12), p.7463-7471</ispartof><rights>The Minerals, Metals & Materials Society 2018</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2316-e7370891f745883d2d62694233874002c7dfa7ff4ad0e65bed7f620f19a22ed3</citedby><cites>FETCH-LOGICAL-c2316-e7370891f745883d2d62694233874002c7dfa7ff4ad0e65bed7f620f19a22ed3</cites><orcidid>0000-0001-5762-6424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-018-6687-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-018-6687-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lima, João V. M.</creatorcontrib><creatorcontrib>Boratto, Miguel H.</creatorcontrib><creatorcontrib>dos Santos, Stevan B. O.</creatorcontrib><creatorcontrib>Scalvi, Luis V. A.</creatorcontrib><title>Thermal Annealing Influence on the Properties of Heterostructure Based on 2 at.%Eu Doped SnO2 and Cu1.8S</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Aiming at optoelectronic applications, a heterostructure based on Eu-doped tin oxide (SnO
2
) and copper sulfide (Cu
2−
x
S) is built. SnO
2
thin films doped with 2 at.% Eu were obtained by the sol–gel dip-coating and spin-coating techniques, whereas the Cu
2−
x
S film was obtained by resistive evaporation. Samples were prepared using three distinct thermal annealing temperatures of the SnO
2
bottom layer: 150°C, 250°C and 500°C. Transmittance and absorption spectra of the heterostructure shows high transparency in the visible to near infrared range (600–1800 nm), and considering the dominance of SnO
2
on light absorption, it was possible to evaluate the sample indirect bandgap around 3.5 eV, independently of the thermal annealing temperature. Cyclic voltammetry and impedance spectroscopy, in conjunction with calculation of the hysteresis index, show that the heterostructure presents a behavior highly capacitive, and the higher annealing temperature leads to higher capacitance at low frequencies, similar to the observed qualitative behavior of supercapacitive devices. Besides, the sample with the SnO
2
bottom layer annealed at 500°C yielded a higher current density.</description><subject>Absorption spectra</subject><subject>Annealing</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper sulfides</subject><subject>Dip coatings</subject><subject>Electromagnetic absorption</subject><subject>Electronics and Microelectronics</subject><subject>Heterostructures</subject><subject>Immersion coating</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronics</subject><subject>Radioactivity</subject><subject>Sol-gel processes</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Spin coating</subject><subject>Thin films</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1KAzEUhYMoWKsP4C4gLqfmJjNJuqy12kKhQrtwF-Lkpj-0mZrMLHwbn8Unc8oIrlzdzXfO4X6E3AIbAGPqIQFImWcMdCalVpk8Iz0ocpGBlm_npMeEhKzgorgkVyntGIMCNPTIdrXBeLB7OgoB7X4b1nQW_L7BUCKtAq03SF9jdcRYbzHRytMp1hirVMemrJuI9NEmdCeUf3_ZenA_aehTyzu6DAtObXB03MBAL6_Jhbf7hDe_t09Wz5PVeJrNFy-z8WielVyAzFAJxfQQvMoLrYXjTnI5zLkQWuWM8VI5b5X3uXUMZfGOTnnJmYeh5Ryd6JO7rvYYq48GU212VRNDu2g4AAwLzYRuKeiosn0lRfTmGLcHGz8NMHMSajqhphVqTkKNbDO8y6SWDWuMf83_h34AztZ3IA</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Lima, João V. M.</creator><creator>Boratto, Miguel H.</creator><creator>dos Santos, Stevan B. O.</creator><creator>Scalvi, Luis V. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-5762-6424</orcidid></search><sort><creationdate>20181201</creationdate><title>Thermal Annealing Influence on the Properties of Heterostructure Based on 2 at.%Eu Doped SnO2 and Cu1.8S</title><author>Lima, João V. M. ; Boratto, Miguel H. ; dos Santos, Stevan B. O. ; Scalvi, Luis V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2316-e7370891f745883d2d62694233874002c7dfa7ff4ad0e65bed7f620f19a22ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption spectra</topic><topic>Annealing</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper sulfides</topic><topic>Dip coatings</topic><topic>Electromagnetic absorption</topic><topic>Electronics and Microelectronics</topic><topic>Heterostructures</topic><topic>Immersion coating</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronics</topic><topic>Radioactivity</topic><topic>Sol-gel processes</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Spin coating</topic><topic>Thin films</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, João V. M.</creatorcontrib><creatorcontrib>Boratto, Miguel H.</creatorcontrib><creatorcontrib>dos Santos, Stevan B. O.</creatorcontrib><creatorcontrib>Scalvi, Luis V. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, João V. M.</au><au>Boratto, Miguel H.</au><au>dos Santos, Stevan B. O.</au><au>Scalvi, Luis V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Annealing Influence on the Properties of Heterostructure Based on 2 at.%Eu Doped SnO2 and Cu1.8S</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>47</volume><issue>12</issue><spage>7463</spage><epage>7471</epage><pages>7463-7471</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Aiming at optoelectronic applications, a heterostructure based on Eu-doped tin oxide (SnO
2
) and copper sulfide (Cu
2−
x
S) is built. SnO
2
thin films doped with 2 at.% Eu were obtained by the sol–gel dip-coating and spin-coating techniques, whereas the Cu
2−
x
S film was obtained by resistive evaporation. Samples were prepared using three distinct thermal annealing temperatures of the SnO
2
bottom layer: 150°C, 250°C and 500°C. Transmittance and absorption spectra of the heterostructure shows high transparency in the visible to near infrared range (600–1800 nm), and considering the dominance of SnO
2
on light absorption, it was possible to evaluate the sample indirect bandgap around 3.5 eV, independently of the thermal annealing temperature. Cyclic voltammetry and impedance spectroscopy, in conjunction with calculation of the hysteresis index, show that the heterostructure presents a behavior highly capacitive, and the higher annealing temperature leads to higher capacitance at low frequencies, similar to the observed qualitative behavior of supercapacitive devices. Besides, the sample with the SnO
2
bottom layer annealed at 500°C yielded a higher current density.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-018-6687-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5762-6424</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2018-12, Vol.47 (12), p.7463-7471 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2111958038 |
source | Springer |
subjects | Absorption spectra Annealing Characterization and Evaluation of Materials Chemistry and Materials Science Copper sulfides Dip coatings Electromagnetic absorption Electronics and Microelectronics Heterostructures Immersion coating Instrumentation Materials Science Optical and Electronic Materials Optoelectronics Radioactivity Sol-gel processes Solid State Physics Spectrum analysis Spin coating Thin films Tin dioxide Tin oxides |
title | Thermal Annealing Influence on the Properties of Heterostructure Based on 2 at.%Eu Doped SnO2 and Cu1.8S |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Annealing%20Influence%20on%20the%20Properties%20of%20Heterostructure%20Based%20on%202%C2%A0at.%25Eu%20Doped%20SnO2%20and%20Cu1.8S&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Lima,%20Jo%C3%A3o%20V.%20M.&rft.date=2018-12-01&rft.volume=47&rft.issue=12&rft.spage=7463&rft.epage=7471&rft.pages=7463-7471&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-018-6687-6&rft_dat=%3Cproquest_cross%3E2111958038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111958038&rft_id=info:pmid/&rfr_iscdi=true |