17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators
High quality factor optical microcavities have been employed in a variety of material systems to enhance nonlinear optical interactions. While single-crystalline aluminum nitride microresonators have recently emerged as a low loss platform for integrated nonlinear optics such as four wave mixing and...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-09, Vol.113 (13) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 113 |
creator | Bruch, Alexander W. Liu, Xianwen Guo, Xiang Surya, Joshua B. Gong, Zheng Zhang, Liang Wang, Junxi Yan, Jianchang Tang, Hong X. |
description | High quality factor optical microcavities have been employed in a variety of material systems to enhance nonlinear optical interactions. While single-crystalline aluminum nitride microresonators have recently emerged as a low loss platform for integrated nonlinear optics such as four wave mixing and Raman lasing, few studies have investigated this material for second-harmonic generation. In this letter, we demonstrate an optimized fabrication of dually resonant phase-matched ring resonators from epitaxial aluminum nitride thin films. An unprecendented second-harmonic generation efficiency of 17 000%/W is obtained in the low power regime, and pump depletion is observed at a relatively low input power of 3.5 mW. This poses epitaxial aluminum nitride as the highest efficiency second-harmonic generator among current integrated platforms. |
doi_str_mv | 10.1063/1.5042506 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111884153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111884153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-be67fac9496545f043711da0e9fcca55a7ebbb511830833c1ec4c350848257b3</originalsourceid><addsrcrecordid>eNqdkE1LwzAYx4MoOKcHv0FAPCjU5Wmapj3K8A0GXgYeQ5omLqNNZtIOdvPq1_STGNnAu6eHH_yetz9Cl0DugJR0BneMFDkj5RGaAOE8owDVMZoQQmhW1gxO0VmM64Qsp3SCVsC_P78SXs_ecNTKuzZbydB7ZxVOtNUhWu-wNsYqq53aYetwtO6905kKuzjIrrNOY9mNvXVjj50dgm017q0KPujonRx8iOfoxMgu6otDnaLl48Ny_pwtXp9e5veLTNGcD1mjS26kqou6ZAUzpKAcoJVE10YpyZjkumkalp6ipKJUgVaFooxURZUz3tAputqP3QT_Meo4iLUfg0sbRQ6pqyqA0WTd7K10YoxBG7EJtpdhJ4CI3xwFiEOOyb3du1HZQQ4pjP_JWx_-RLFpDf0BfZCCPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111884153</pqid></control><display><type>article</type><title>17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bruch, Alexander W. ; Liu, Xianwen ; Guo, Xiang ; Surya, Joshua B. ; Gong, Zheng ; Zhang, Liang ; Wang, Junxi ; Yan, Jianchang ; Tang, Hong X.</creator><creatorcontrib>Bruch, Alexander W. ; Liu, Xianwen ; Guo, Xiang ; Surya, Joshua B. ; Gong, Zheng ; Zhang, Liang ; Wang, Junxi ; Yan, Jianchang ; Tang, Hong X.</creatorcontrib><description>High quality factor optical microcavities have been employed in a variety of material systems to enhance nonlinear optical interactions. While single-crystalline aluminum nitride microresonators have recently emerged as a low loss platform for integrated nonlinear optics such as four wave mixing and Raman lasing, few studies have investigated this material for second-harmonic generation. In this letter, we demonstrate an optimized fabrication of dually resonant phase-matched ring resonators from epitaxial aluminum nitride thin films. An unprecendented second-harmonic generation efficiency of 17 000%/W is obtained in the low power regime, and pump depletion is observed at a relatively low input power of 3.5 mW. This poses epitaxial aluminum nitride as the highest efficiency second-harmonic generator among current integrated platforms.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5042506</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum ; Aluminum nitride ; Applied physics ; Crystal structure ; Crystallinity ; Efficiency ; Energy conversion efficiency ; Four-wave mixing ; Harmonic generators ; Microcavities ; Nonlinear optics ; Nonlinear systems ; Phase matching ; Q factors ; Second harmonic generation ; Single crystals ; Thin films</subject><ispartof>Applied physics letters, 2018-09, Vol.113 (13)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-be67fac9496545f043711da0e9fcca55a7ebbb511830833c1ec4c350848257b3</citedby><cites>FETCH-LOGICAL-c327t-be67fac9496545f043711da0e9fcca55a7ebbb511830833c1ec4c350848257b3</cites><orcidid>0000-0001-7398-4387 ; 0000-0002-3666-8606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5042506$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,792,4500,27907,27908,76135</link.rule.ids></links><search><creatorcontrib>Bruch, Alexander W.</creatorcontrib><creatorcontrib>Liu, Xianwen</creatorcontrib><creatorcontrib>Guo, Xiang</creatorcontrib><creatorcontrib>Surya, Joshua B.</creatorcontrib><creatorcontrib>Gong, Zheng</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Wang, Junxi</creatorcontrib><creatorcontrib>Yan, Jianchang</creatorcontrib><creatorcontrib>Tang, Hong X.</creatorcontrib><title>17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators</title><title>Applied physics letters</title><description>High quality factor optical microcavities have been employed in a variety of material systems to enhance nonlinear optical interactions. While single-crystalline aluminum nitride microresonators have recently emerged as a low loss platform for integrated nonlinear optics such as four wave mixing and Raman lasing, few studies have investigated this material for second-harmonic generation. In this letter, we demonstrate an optimized fabrication of dually resonant phase-matched ring resonators from epitaxial aluminum nitride thin films. An unprecendented second-harmonic generation efficiency of 17 000%/W is obtained in the low power regime, and pump depletion is observed at a relatively low input power of 3.5 mW. This poses epitaxial aluminum nitride as the highest efficiency second-harmonic generator among current integrated platforms.</description><subject>Aluminum</subject><subject>Aluminum nitride</subject><subject>Applied physics</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Four-wave mixing</subject><subject>Harmonic generators</subject><subject>Microcavities</subject><subject>Nonlinear optics</subject><subject>Nonlinear systems</subject><subject>Phase matching</subject><subject>Q factors</subject><subject>Second harmonic generation</subject><subject>Single crystals</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LwzAYx4MoOKcHv0FAPCjU5Wmapj3K8A0GXgYeQ5omLqNNZtIOdvPq1_STGNnAu6eHH_yetz9Cl0DugJR0BneMFDkj5RGaAOE8owDVMZoQQmhW1gxO0VmM64Qsp3SCVsC_P78SXs_ecNTKuzZbydB7ZxVOtNUhWu-wNsYqq53aYetwtO6905kKuzjIrrNOY9mNvXVjj50dgm017q0KPujonRx8iOfoxMgu6otDnaLl48Ny_pwtXp9e5veLTNGcD1mjS26kqou6ZAUzpKAcoJVE10YpyZjkumkalp6ipKJUgVaFooxURZUz3tAputqP3QT_Meo4iLUfg0sbRQ6pqyqA0WTd7K10YoxBG7EJtpdhJ4CI3xwFiEOOyb3du1HZQQ4pjP_JWx_-RLFpDf0BfZCCPg</recordid><startdate>20180924</startdate><enddate>20180924</enddate><creator>Bruch, Alexander W.</creator><creator>Liu, Xianwen</creator><creator>Guo, Xiang</creator><creator>Surya, Joshua B.</creator><creator>Gong, Zheng</creator><creator>Zhang, Liang</creator><creator>Wang, Junxi</creator><creator>Yan, Jianchang</creator><creator>Tang, Hong X.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7398-4387</orcidid><orcidid>https://orcid.org/0000-0002-3666-8606</orcidid></search><sort><creationdate>20180924</creationdate><title>17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators</title><author>Bruch, Alexander W. ; Liu, Xianwen ; Guo, Xiang ; Surya, Joshua B. ; Gong, Zheng ; Zhang, Liang ; Wang, Junxi ; Yan, Jianchang ; Tang, Hong X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-be67fac9496545f043711da0e9fcca55a7ebbb511830833c1ec4c350848257b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Aluminum nitride</topic><topic>Applied physics</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Four-wave mixing</topic><topic>Harmonic generators</topic><topic>Microcavities</topic><topic>Nonlinear optics</topic><topic>Nonlinear systems</topic><topic>Phase matching</topic><topic>Q factors</topic><topic>Second harmonic generation</topic><topic>Single crystals</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruch, Alexander W.</creatorcontrib><creatorcontrib>Liu, Xianwen</creatorcontrib><creatorcontrib>Guo, Xiang</creatorcontrib><creatorcontrib>Surya, Joshua B.</creatorcontrib><creatorcontrib>Gong, Zheng</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Wang, Junxi</creatorcontrib><creatorcontrib>Yan, Jianchang</creatorcontrib><creatorcontrib>Tang, Hong X.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruch, Alexander W.</au><au>Liu, Xianwen</au><au>Guo, Xiang</au><au>Surya, Joshua B.</au><au>Gong, Zheng</au><au>Zhang, Liang</au><au>Wang, Junxi</au><au>Yan, Jianchang</au><au>Tang, Hong X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators</atitle><jtitle>Applied physics letters</jtitle><date>2018-09-24</date><risdate>2018</risdate><volume>113</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>High quality factor optical microcavities have been employed in a variety of material systems to enhance nonlinear optical interactions. While single-crystalline aluminum nitride microresonators have recently emerged as a low loss platform for integrated nonlinear optics such as four wave mixing and Raman lasing, few studies have investigated this material for second-harmonic generation. In this letter, we demonstrate an optimized fabrication of dually resonant phase-matched ring resonators from epitaxial aluminum nitride thin films. An unprecendented second-harmonic generation efficiency of 17 000%/W is obtained in the low power regime, and pump depletion is observed at a relatively low input power of 3.5 mW. This poses epitaxial aluminum nitride as the highest efficiency second-harmonic generator among current integrated platforms.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5042506</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7398-4387</orcidid><orcidid>https://orcid.org/0000-0002-3666-8606</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2018-09, Vol.113 (13) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2111884153 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Aluminum Aluminum nitride Applied physics Crystal structure Crystallinity Efficiency Energy conversion efficiency Four-wave mixing Harmonic generators Microcavities Nonlinear optics Nonlinear systems Phase matching Q factors Second harmonic generation Single crystals Thin films |
title | 17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=17%E2%80%89000%25/W%20second-harmonic%20conversion%20efficiency%20in%20single-crystalline%20aluminum%20nitride%20microresonators&rft.jtitle=Applied%20physics%20letters&rft.au=Bruch,%20Alexander%20W.&rft.date=2018-09-24&rft.volume=113&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5042506&rft_dat=%3Cproquest_cross%3E2111884153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111884153&rft_id=info:pmid/&rfr_iscdi=true |