17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators

High quality factor optical microcavities have been employed in a variety of material systems to enhance nonlinear optical interactions. While single-crystalline aluminum nitride microresonators have recently emerged as a low loss platform for integrated nonlinear optics such as four wave mixing and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-09, Vol.113 (13)
Hauptverfasser: Bruch, Alexander W., Liu, Xianwen, Guo, Xiang, Surya, Joshua B., Gong, Zheng, Zhang, Liang, Wang, Junxi, Yan, Jianchang, Tang, Hong X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Applied physics letters
container_volume 113
creator Bruch, Alexander W.
Liu, Xianwen
Guo, Xiang
Surya, Joshua B.
Gong, Zheng
Zhang, Liang
Wang, Junxi
Yan, Jianchang
Tang, Hong X.
description High quality factor optical microcavities have been employed in a variety of material systems to enhance nonlinear optical interactions. While single-crystalline aluminum nitride microresonators have recently emerged as a low loss platform for integrated nonlinear optics such as four wave mixing and Raman lasing, few studies have investigated this material for second-harmonic generation. In this letter, we demonstrate an optimized fabrication of dually resonant phase-matched ring resonators from epitaxial aluminum nitride thin films. An unprecendented second-harmonic generation efficiency of 17 000%/W is obtained in the low power regime, and pump depletion is observed at a relatively low input power of 3.5 mW. This poses epitaxial aluminum nitride as the highest efficiency second-harmonic generator among current integrated platforms.
doi_str_mv 10.1063/1.5042506
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111884153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111884153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-be67fac9496545f043711da0e9fcca55a7ebbb511830833c1ec4c350848257b3</originalsourceid><addsrcrecordid>eNqdkE1LwzAYx4MoOKcHv0FAPCjU5Wmapj3K8A0GXgYeQ5omLqNNZtIOdvPq1_STGNnAu6eHH_yetz9Cl0DugJR0BneMFDkj5RGaAOE8owDVMZoQQmhW1gxO0VmM64Qsp3SCVsC_P78SXs_ecNTKuzZbydB7ZxVOtNUhWu-wNsYqq53aYetwtO6905kKuzjIrrNOY9mNvXVjj50dgm017q0KPujonRx8iOfoxMgu6otDnaLl48Ny_pwtXp9e5veLTNGcD1mjS26kqou6ZAUzpKAcoJVE10YpyZjkumkalp6ipKJUgVaFooxURZUz3tAputqP3QT_Meo4iLUfg0sbRQ6pqyqA0WTd7K10YoxBG7EJtpdhJ4CI3xwFiEOOyb3du1HZQQ4pjP_JWx_-RLFpDf0BfZCCPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111884153</pqid></control><display><type>article</type><title>17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bruch, Alexander W. ; Liu, Xianwen ; Guo, Xiang ; Surya, Joshua B. ; Gong, Zheng ; Zhang, Liang ; Wang, Junxi ; Yan, Jianchang ; Tang, Hong X.</creator><creatorcontrib>Bruch, Alexander W. ; Liu, Xianwen ; Guo, Xiang ; Surya, Joshua B. ; Gong, Zheng ; Zhang, Liang ; Wang, Junxi ; Yan, Jianchang ; Tang, Hong X.</creatorcontrib><description>High quality factor optical microcavities have been employed in a variety of material systems to enhance nonlinear optical interactions. While single-crystalline aluminum nitride microresonators have recently emerged as a low loss platform for integrated nonlinear optics such as four wave mixing and Raman lasing, few studies have investigated this material for second-harmonic generation. In this letter, we demonstrate an optimized fabrication of dually resonant phase-matched ring resonators from epitaxial aluminum nitride thin films. An unprecendented second-harmonic generation efficiency of 17 000%/W is obtained in the low power regime, and pump depletion is observed at a relatively low input power of 3.5 mW. This poses epitaxial aluminum nitride as the highest efficiency second-harmonic generator among current integrated platforms.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5042506</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum ; Aluminum nitride ; Applied physics ; Crystal structure ; Crystallinity ; Efficiency ; Energy conversion efficiency ; Four-wave mixing ; Harmonic generators ; Microcavities ; Nonlinear optics ; Nonlinear systems ; Phase matching ; Q factors ; Second harmonic generation ; Single crystals ; Thin films</subject><ispartof>Applied physics letters, 2018-09, Vol.113 (13)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-be67fac9496545f043711da0e9fcca55a7ebbb511830833c1ec4c350848257b3</citedby><cites>FETCH-LOGICAL-c327t-be67fac9496545f043711da0e9fcca55a7ebbb511830833c1ec4c350848257b3</cites><orcidid>0000-0001-7398-4387 ; 0000-0002-3666-8606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5042506$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,792,4500,27907,27908,76135</link.rule.ids></links><search><creatorcontrib>Bruch, Alexander W.</creatorcontrib><creatorcontrib>Liu, Xianwen</creatorcontrib><creatorcontrib>Guo, Xiang</creatorcontrib><creatorcontrib>Surya, Joshua B.</creatorcontrib><creatorcontrib>Gong, Zheng</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Wang, Junxi</creatorcontrib><creatorcontrib>Yan, Jianchang</creatorcontrib><creatorcontrib>Tang, Hong X.</creatorcontrib><title>17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators</title><title>Applied physics letters</title><description>High quality factor optical microcavities have been employed in a variety of material systems to enhance nonlinear optical interactions. While single-crystalline aluminum nitride microresonators have recently emerged as a low loss platform for integrated nonlinear optics such as four wave mixing and Raman lasing, few studies have investigated this material for second-harmonic generation. In this letter, we demonstrate an optimized fabrication of dually resonant phase-matched ring resonators from epitaxial aluminum nitride thin films. An unprecendented second-harmonic generation efficiency of 17 000%/W is obtained in the low power regime, and pump depletion is observed at a relatively low input power of 3.5 mW. This poses epitaxial aluminum nitride as the highest efficiency second-harmonic generator among current integrated platforms.</description><subject>Aluminum</subject><subject>Aluminum nitride</subject><subject>Applied physics</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Four-wave mixing</subject><subject>Harmonic generators</subject><subject>Microcavities</subject><subject>Nonlinear optics</subject><subject>Nonlinear systems</subject><subject>Phase matching</subject><subject>Q factors</subject><subject>Second harmonic generation</subject><subject>Single crystals</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LwzAYx4MoOKcHv0FAPCjU5Wmapj3K8A0GXgYeQ5omLqNNZtIOdvPq1_STGNnAu6eHH_yetz9Cl0DugJR0BneMFDkj5RGaAOE8owDVMZoQQmhW1gxO0VmM64Qsp3SCVsC_P78SXs_ecNTKuzZbydB7ZxVOtNUhWu-wNsYqq53aYetwtO6905kKuzjIrrNOY9mNvXVjj50dgm017q0KPujonRx8iOfoxMgu6otDnaLl48Ny_pwtXp9e5veLTNGcD1mjS26kqou6ZAUzpKAcoJVE10YpyZjkumkalp6ipKJUgVaFooxURZUz3tAputqP3QT_Meo4iLUfg0sbRQ6pqyqA0WTd7K10YoxBG7EJtpdhJ4CI3xwFiEOOyb3du1HZQQ4pjP_JWx_-RLFpDf0BfZCCPg</recordid><startdate>20180924</startdate><enddate>20180924</enddate><creator>Bruch, Alexander W.</creator><creator>Liu, Xianwen</creator><creator>Guo, Xiang</creator><creator>Surya, Joshua B.</creator><creator>Gong, Zheng</creator><creator>Zhang, Liang</creator><creator>Wang, Junxi</creator><creator>Yan, Jianchang</creator><creator>Tang, Hong X.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7398-4387</orcidid><orcidid>https://orcid.org/0000-0002-3666-8606</orcidid></search><sort><creationdate>20180924</creationdate><title>17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators</title><author>Bruch, Alexander W. ; Liu, Xianwen ; Guo, Xiang ; Surya, Joshua B. ; Gong, Zheng ; Zhang, Liang ; Wang, Junxi ; Yan, Jianchang ; Tang, Hong X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-be67fac9496545f043711da0e9fcca55a7ebbb511830833c1ec4c350848257b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Aluminum nitride</topic><topic>Applied physics</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Four-wave mixing</topic><topic>Harmonic generators</topic><topic>Microcavities</topic><topic>Nonlinear optics</topic><topic>Nonlinear systems</topic><topic>Phase matching</topic><topic>Q factors</topic><topic>Second harmonic generation</topic><topic>Single crystals</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruch, Alexander W.</creatorcontrib><creatorcontrib>Liu, Xianwen</creatorcontrib><creatorcontrib>Guo, Xiang</creatorcontrib><creatorcontrib>Surya, Joshua B.</creatorcontrib><creatorcontrib>Gong, Zheng</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Wang, Junxi</creatorcontrib><creatorcontrib>Yan, Jianchang</creatorcontrib><creatorcontrib>Tang, Hong X.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruch, Alexander W.</au><au>Liu, Xianwen</au><au>Guo, Xiang</au><au>Surya, Joshua B.</au><au>Gong, Zheng</au><au>Zhang, Liang</au><au>Wang, Junxi</au><au>Yan, Jianchang</au><au>Tang, Hong X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators</atitle><jtitle>Applied physics letters</jtitle><date>2018-09-24</date><risdate>2018</risdate><volume>113</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>High quality factor optical microcavities have been employed in a variety of material systems to enhance nonlinear optical interactions. While single-crystalline aluminum nitride microresonators have recently emerged as a low loss platform for integrated nonlinear optics such as four wave mixing and Raman lasing, few studies have investigated this material for second-harmonic generation. In this letter, we demonstrate an optimized fabrication of dually resonant phase-matched ring resonators from epitaxial aluminum nitride thin films. An unprecendented second-harmonic generation efficiency of 17 000%/W is obtained in the low power regime, and pump depletion is observed at a relatively low input power of 3.5 mW. This poses epitaxial aluminum nitride as the highest efficiency second-harmonic generator among current integrated platforms.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5042506</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7398-4387</orcidid><orcidid>https://orcid.org/0000-0002-3666-8606</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-09, Vol.113 (13)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2111884153
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aluminum
Aluminum nitride
Applied physics
Crystal structure
Crystallinity
Efficiency
Energy conversion efficiency
Four-wave mixing
Harmonic generators
Microcavities
Nonlinear optics
Nonlinear systems
Phase matching
Q factors
Second harmonic generation
Single crystals
Thin films
title 17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=17%E2%80%89000%25/W%20second-harmonic%20conversion%20efficiency%20in%20single-crystalline%20aluminum%20nitride%20microresonators&rft.jtitle=Applied%20physics%20letters&rft.au=Bruch,%20Alexander%20W.&rft.date=2018-09-24&rft.volume=113&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5042506&rft_dat=%3Cproquest_cross%3E2111884153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111884153&rft_id=info:pmid/&rfr_iscdi=true