Analytic inference in finite population framework via resampling

The aim of this paper is to provide a resampling technique that allows us to make inference on superpopulation parameters in finite population setting. Under complex sampling designs, it is often difficult to obtain explicit results about superpopulation parameters of interest, especially in terms o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-09
Hauptverfasser: Conti, Pier Luigi, Alberto Di Iorio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Conti, Pier Luigi
Alberto Di Iorio
description The aim of this paper is to provide a resampling technique that allows us to make inference on superpopulation parameters in finite population setting. Under complex sampling designs, it is often difficult to obtain explicit results about superpopulation parameters of interest, especially in terms of confidence intervals and test-statistics. Computer intensive procedures, such as resampling, allow us to avoid this problem. To reach the above goal, asymptotic results about empirical processes in finite population framework are first obtained. Then, a resampling procedure is proposed, and justified via asymptotic considerations. Finally, the results obtained are applied to different inferential problems and a simulation study is performed to test the goodness of our proposal.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2111434721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111434721</sourcerecordid><originalsourceid>FETCH-proquest_journals_21114347213</originalsourceid><addsrcrecordid>eNqNjUsKwjAURYMgWLR7CDguNC-tdaiI4gKcl1Be5dU0ifko7t4MXICjezgcuAtWgJSi2jcAK1aGMNV1DbsO2lYW7HA0Sn8iDZzMiB7NgJn4SIYicmdd0iqSzcarGd_WP_iLFPcY1Ow0mfuGLUelA5a_XbPt5Xw7XSvn7TNhiP1kk88noQchRCObDoT8r_oChNs5ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111434721</pqid></control><display><type>article</type><title>Analytic inference in finite population framework via resampling</title><source>Free E- Journals</source><creator>Conti, Pier Luigi ; Alberto Di Iorio</creator><creatorcontrib>Conti, Pier Luigi ; Alberto Di Iorio</creatorcontrib><description>The aim of this paper is to provide a resampling technique that allows us to make inference on superpopulation parameters in finite population setting. Under complex sampling designs, it is often difficult to obtain explicit results about superpopulation parameters of interest, especially in terms of confidence intervals and test-statistics. Computer intensive procedures, such as resampling, allow us to avoid this problem. To reach the above goal, asymptotic results about empirical processes in finite population framework are first obtained. Then, a resampling procedure is proposed, and justified via asymptotic considerations. Finally, the results obtained are applied to different inferential problems and a simulation study is performed to test the goodness of our proposal.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic methods ; Asymptotic properties ; Computer simulation ; Confidence intervals ; Empirical analysis ; Inference ; Parameters ; Resampling ; Sampling designs ; Simulation ; Statistical tests</subject><ispartof>arXiv.org, 2018-09</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Conti, Pier Luigi</creatorcontrib><creatorcontrib>Alberto Di Iorio</creatorcontrib><title>Analytic inference in finite population framework via resampling</title><title>arXiv.org</title><description>The aim of this paper is to provide a resampling technique that allows us to make inference on superpopulation parameters in finite population setting. Under complex sampling designs, it is often difficult to obtain explicit results about superpopulation parameters of interest, especially in terms of confidence intervals and test-statistics. Computer intensive procedures, such as resampling, allow us to avoid this problem. To reach the above goal, asymptotic results about empirical processes in finite population framework are first obtained. Then, a resampling procedure is proposed, and justified via asymptotic considerations. Finally, the results obtained are applied to different inferential problems and a simulation study is performed to test the goodness of our proposal.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Empirical analysis</subject><subject>Inference</subject><subject>Parameters</subject><subject>Resampling</subject><subject>Sampling designs</subject><subject>Simulation</subject><subject>Statistical tests</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUsKwjAURYMgWLR7CDguNC-tdaiI4gKcl1Be5dU0ifko7t4MXICjezgcuAtWgJSi2jcAK1aGMNV1DbsO2lYW7HA0Sn8iDZzMiB7NgJn4SIYicmdd0iqSzcarGd_WP_iLFPcY1Ow0mfuGLUelA5a_XbPt5Xw7XSvn7TNhiP1kk88noQchRCObDoT8r_oChNs5ng</recordid><startdate>20180921</startdate><enddate>20180921</enddate><creator>Conti, Pier Luigi</creator><creator>Alberto Di Iorio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180921</creationdate><title>Analytic inference in finite population framework via resampling</title><author>Conti, Pier Luigi ; Alberto Di Iorio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21114347213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Empirical analysis</topic><topic>Inference</topic><topic>Parameters</topic><topic>Resampling</topic><topic>Sampling designs</topic><topic>Simulation</topic><topic>Statistical tests</topic><toplevel>online_resources</toplevel><creatorcontrib>Conti, Pier Luigi</creatorcontrib><creatorcontrib>Alberto Di Iorio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conti, Pier Luigi</au><au>Alberto Di Iorio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Analytic inference in finite population framework via resampling</atitle><jtitle>arXiv.org</jtitle><date>2018-09-21</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>The aim of this paper is to provide a resampling technique that allows us to make inference on superpopulation parameters in finite population setting. Under complex sampling designs, it is often difficult to obtain explicit results about superpopulation parameters of interest, especially in terms of confidence intervals and test-statistics. Computer intensive procedures, such as resampling, allow us to avoid this problem. To reach the above goal, asymptotic results about empirical processes in finite population framework are first obtained. Then, a resampling procedure is proposed, and justified via asymptotic considerations. Finally, the results obtained are applied to different inferential problems and a simulation study is performed to test the goodness of our proposal.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2111434721
source Free E- Journals
subjects Asymptotic methods
Asymptotic properties
Computer simulation
Confidence intervals
Empirical analysis
Inference
Parameters
Resampling
Sampling designs
Simulation
Statistical tests
title Analytic inference in finite population framework via resampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Analytic%20inference%20in%20finite%20population%20framework%20via%20resampling&rft.jtitle=arXiv.org&rft.au=Conti,%20Pier%20Luigi&rft.date=2018-09-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2111434721%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111434721&rft_id=info:pmid/&rfr_iscdi=true