Broadband loop gap resonator for nitrogen vacancy centers in diamond

We present an S-band tunable loop gap resonator (LGR), which provides strong, homogeneous, and directionally uniform broadband microwave (MW) drive for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device provides drive field amplitudes approaching 5 G over a circular ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2018-09, Vol.89 (9), p.094705-094705
Hauptverfasser: Eisenach, E. R., Barry, J. F., Pham, L. M., Rojas, R. G., Englund, D. R., Braje, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 094705
container_issue 9
container_start_page 094705
container_title Review of scientific instruments
container_volume 89
creator Eisenach, E. R.
Barry, J. F.
Pham, L. M.
Rojas, R. G.
Englund, D. R.
Braje, D. A.
description We present an S-band tunable loop gap resonator (LGR), which provides strong, homogeneous, and directionally uniform broadband microwave (MW) drive for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device provides drive field amplitudes approaching 5 G over a circular area ≳50 mm2 or cylindrical volume ≳250 mm3. The wide 80 MHz device bandwidth allows driving all NV Zeeman resonances for bias magnetic fields below 20 G. The device realizes percent-scale MW drive inhomogeneity; we measure a fractional root-mean-square inhomogeneity σrms = 1.6% and a peak-to-peak variation σpp = 3% over a circular area of 11 mm2 and σrms = 3.2% and σpp = 10.5% over a larger 32 mm2 circular area. We demonstrate incident MW power coupling to the LGR using two methodologies: a printed circuit board-fabricated exciter antenna for deployed compact bulk sensors and an inductive coupling coil suitable for microscope-style imaging. The inductive coupling coil allows for approximately 2π steradian combined optical access above and below the device, ideal for envisioned and existing NV imaging and bulk sensing applications.
doi_str_mv 10.1063/1.5037465
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111335499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116128961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-ec14cd2cd96741354069d267b40e5e2c9c77da063ca3108c7ba52944550508d63</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgiq3VhS8gATcqTM09k6XWKxTc6HrIJGmZMpPUZEbo25vS6sKFgZDNx59zfgDOMZpiJOgtnnJEJRP8AIwxKlUhBaGHYIwQZYWQrByBk5RWKB-O8TEYUURkKQkbg4f7GLSttbewDWENl3oNo0vB6z5EuMjXN30MS-fhlzbamw00zvcuJth4aBvdBW9PwdFCt8md7d8J-Hh6fJ-9FPO359fZ3bwwDLO-cAYzY4mxKs-EKWdIKEuErBly3BGjjJRW54WMpnkNI2vNiWKMc8RRaQWdgKtd7jqGz8GlvuqaZFzbau_CkCqCscCkVAJnevmHrsIQfZ5uqzDNvyuV1fVOmRhSim5RrWPT6bipMKq21Va42leb7cU-cag7Z3_lT5cZ3OxAMk2v-yb4f9K-AQcbfhk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111335499</pqid></control><display><type>article</type><title>Broadband loop gap resonator for nitrogen vacancy centers in diamond</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Eisenach, E. R. ; Barry, J. F. ; Pham, L. M. ; Rojas, R. G. ; Englund, D. R. ; Braje, D. A.</creator><creatorcontrib>Eisenach, E. R. ; Barry, J. F. ; Pham, L. M. ; Rojas, R. G. ; Englund, D. R. ; Braje, D. A.</creatorcontrib><description>We present an S-band tunable loop gap resonator (LGR), which provides strong, homogeneous, and directionally uniform broadband microwave (MW) drive for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device provides drive field amplitudes approaching 5 G over a circular area ≳50 mm2 or cylindrical volume ≳250 mm3. The wide 80 MHz device bandwidth allows driving all NV Zeeman resonances for bias magnetic fields below 20 G. The device realizes percent-scale MW drive inhomogeneity; we measure a fractional root-mean-square inhomogeneity σrms = 1.6% and a peak-to-peak variation σpp = 3% over a circular area of 11 mm2 and σrms = 3.2% and σpp = 10.5% over a larger 32 mm2 circular area. We demonstrate incident MW power coupling to the LGR using two methodologies: a printed circuit board-fabricated exciter antenna for deployed compact bulk sensors and an inductive coupling coil suitable for microscope-style imaging. The inductive coupling coil allows for approximately 2π steradian combined optical access above and below the device, ideal for envisioned and existing NV imaging and bulk sensing applications.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5037465</identifier><identifier>PMID: 30278724</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bandwidths ; Broadband ; Circularity ; Diamonds ; Inductive coupling ; Inhomogeneity ; Magnetic resonance ; Resonators ; Scientific apparatus &amp; instruments ; Vacancies</subject><ispartof>Review of scientific instruments, 2018-09, Vol.89 (9), p.094705-094705</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-ec14cd2cd96741354069d267b40e5e2c9c77da063ca3108c7ba52944550508d63</citedby><cites>FETCH-LOGICAL-c414t-ec14cd2cd96741354069d267b40e5e2c9c77da063ca3108c7ba52944550508d63</cites><orcidid>0000-0002-1043-3489 ; 0000-0002-9129-5785 ; 0000000291295785 ; 0000000210433489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5037465$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,76389</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30278724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eisenach, E. R.</creatorcontrib><creatorcontrib>Barry, J. F.</creatorcontrib><creatorcontrib>Pham, L. M.</creatorcontrib><creatorcontrib>Rojas, R. G.</creatorcontrib><creatorcontrib>Englund, D. R.</creatorcontrib><creatorcontrib>Braje, D. A.</creatorcontrib><title>Broadband loop gap resonator for nitrogen vacancy centers in diamond</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We present an S-band tunable loop gap resonator (LGR), which provides strong, homogeneous, and directionally uniform broadband microwave (MW) drive for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device provides drive field amplitudes approaching 5 G over a circular area ≳50 mm2 or cylindrical volume ≳250 mm3. The wide 80 MHz device bandwidth allows driving all NV Zeeman resonances for bias magnetic fields below 20 G. The device realizes percent-scale MW drive inhomogeneity; we measure a fractional root-mean-square inhomogeneity σrms = 1.6% and a peak-to-peak variation σpp = 3% over a circular area of 11 mm2 and σrms = 3.2% and σpp = 10.5% over a larger 32 mm2 circular area. We demonstrate incident MW power coupling to the LGR using two methodologies: a printed circuit board-fabricated exciter antenna for deployed compact bulk sensors and an inductive coupling coil suitable for microscope-style imaging. The inductive coupling coil allows for approximately 2π steradian combined optical access above and below the device, ideal for envisioned and existing NV imaging and bulk sensing applications.</description><subject>Bandwidths</subject><subject>Broadband</subject><subject>Circularity</subject><subject>Diamonds</subject><subject>Inductive coupling</subject><subject>Inhomogeneity</subject><subject>Magnetic resonance</subject><subject>Resonators</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Vacancies</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgiq3VhS8gATcqTM09k6XWKxTc6HrIJGmZMpPUZEbo25vS6sKFgZDNx59zfgDOMZpiJOgtnnJEJRP8AIwxKlUhBaGHYIwQZYWQrByBk5RWKB-O8TEYUURkKQkbg4f7GLSttbewDWENl3oNo0vB6z5EuMjXN30MS-fhlzbamw00zvcuJth4aBvdBW9PwdFCt8md7d8J-Hh6fJ-9FPO359fZ3bwwDLO-cAYzY4mxKs-EKWdIKEuErBly3BGjjJRW54WMpnkNI2vNiWKMc8RRaQWdgKtd7jqGz8GlvuqaZFzbau_CkCqCscCkVAJnevmHrsIQfZ5uqzDNvyuV1fVOmRhSim5RrWPT6bipMKq21Va42leb7cU-cag7Z3_lT5cZ3OxAMk2v-yb4f9K-AQcbfhk</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Eisenach, E. R.</creator><creator>Barry, J. F.</creator><creator>Pham, L. M.</creator><creator>Rojas, R. G.</creator><creator>Englund, D. R.</creator><creator>Braje, D. A.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid><orcidid>https://orcid.org/0000-0002-9129-5785</orcidid><orcidid>https://orcid.org/0000000291295785</orcidid><orcidid>https://orcid.org/0000000210433489</orcidid></search><sort><creationdate>201809</creationdate><title>Broadband loop gap resonator for nitrogen vacancy centers in diamond</title><author>Eisenach, E. R. ; Barry, J. F. ; Pham, L. M. ; Rojas, R. G. ; Englund, D. R. ; Braje, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-ec14cd2cd96741354069d267b40e5e2c9c77da063ca3108c7ba52944550508d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bandwidths</topic><topic>Broadband</topic><topic>Circularity</topic><topic>Diamonds</topic><topic>Inductive coupling</topic><topic>Inhomogeneity</topic><topic>Magnetic resonance</topic><topic>Resonators</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisenach, E. R.</creatorcontrib><creatorcontrib>Barry, J. F.</creatorcontrib><creatorcontrib>Pham, L. M.</creatorcontrib><creatorcontrib>Rojas, R. G.</creatorcontrib><creatorcontrib>Englund, D. R.</creatorcontrib><creatorcontrib>Braje, D. A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenach, E. R.</au><au>Barry, J. F.</au><au>Pham, L. M.</au><au>Rojas, R. G.</au><au>Englund, D. R.</au><au>Braje, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband loop gap resonator for nitrogen vacancy centers in diamond</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-09</date><risdate>2018</risdate><volume>89</volume><issue>9</issue><spage>094705</spage><epage>094705</epage><pages>094705-094705</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We present an S-band tunable loop gap resonator (LGR), which provides strong, homogeneous, and directionally uniform broadband microwave (MW) drive for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device provides drive field amplitudes approaching 5 G over a circular area ≳50 mm2 or cylindrical volume ≳250 mm3. The wide 80 MHz device bandwidth allows driving all NV Zeeman resonances for bias magnetic fields below 20 G. The device realizes percent-scale MW drive inhomogeneity; we measure a fractional root-mean-square inhomogeneity σrms = 1.6% and a peak-to-peak variation σpp = 3% over a circular area of 11 mm2 and σrms = 3.2% and σpp = 10.5% over a larger 32 mm2 circular area. We demonstrate incident MW power coupling to the LGR using two methodologies: a printed circuit board-fabricated exciter antenna for deployed compact bulk sensors and an inductive coupling coil suitable for microscope-style imaging. The inductive coupling coil allows for approximately 2π steradian combined optical access above and below the device, ideal for envisioned and existing NV imaging and bulk sensing applications.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30278724</pmid><doi>10.1063/1.5037465</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid><orcidid>https://orcid.org/0000-0002-9129-5785</orcidid><orcidid>https://orcid.org/0000000291295785</orcidid><orcidid>https://orcid.org/0000000210433489</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2018-09, Vol.89 (9), p.094705-094705
issn 0034-6748
1089-7623
language eng
recordid cdi_proquest_journals_2111335499
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bandwidths
Broadband
Circularity
Diamonds
Inductive coupling
Inhomogeneity
Magnetic resonance
Resonators
Scientific apparatus & instruments
Vacancies
title Broadband loop gap resonator for nitrogen vacancy centers in diamond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20loop%20gap%20resonator%20for%20nitrogen%20vacancy%20centers%20in%20diamond&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Eisenach,%20E.%20R.&rft.date=2018-09&rft.volume=89&rft.issue=9&rft.spage=094705&rft.epage=094705&rft.pages=094705-094705&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5037465&rft_dat=%3Cproquest_cross%3E2116128961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111335499&rft_id=info:pmid/30278724&rfr_iscdi=true