Broadband loop gap resonator for nitrogen vacancy centers in diamond
We present an S-band tunable loop gap resonator (LGR), which provides strong, homogeneous, and directionally uniform broadband microwave (MW) drive for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device provides drive field amplitudes approaching 5 G over a circular ar...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2018-09, Vol.89 (9), p.094705-094705 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 094705 |
---|---|
container_issue | 9 |
container_start_page | 094705 |
container_title | Review of scientific instruments |
container_volume | 89 |
creator | Eisenach, E. R. Barry, J. F. Pham, L. M. Rojas, R. G. Englund, D. R. Braje, D. A. |
description | We present an S-band tunable loop gap resonator (LGR), which provides strong, homogeneous, and directionally uniform broadband microwave (MW) drive for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device provides drive field amplitudes approaching 5 G over a circular area ≳50 mm2 or cylindrical volume ≳250 mm3. The wide 80 MHz device bandwidth allows driving all NV Zeeman resonances for bias magnetic fields below 20 G. The device realizes percent-scale MW drive inhomogeneity; we measure a fractional root-mean-square inhomogeneity σrms = 1.6% and a peak-to-peak variation σpp = 3% over a circular area of 11 mm2 and σrms = 3.2% and σpp = 10.5% over a larger 32 mm2 circular area. We demonstrate incident MW power coupling to the LGR using two methodologies: a printed circuit board-fabricated exciter antenna for deployed compact bulk sensors and an inductive coupling coil suitable for microscope-style imaging. The inductive coupling coil allows for approximately 2π steradian combined optical access above and below the device, ideal for envisioned and existing NV imaging and bulk sensing applications. |
doi_str_mv | 10.1063/1.5037465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111335499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116128961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-ec14cd2cd96741354069d267b40e5e2c9c77da063ca3108c7ba52944550508d63</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgiq3VhS8gATcqTM09k6XWKxTc6HrIJGmZMpPUZEbo25vS6sKFgZDNx59zfgDOMZpiJOgtnnJEJRP8AIwxKlUhBaGHYIwQZYWQrByBk5RWKB-O8TEYUURkKQkbg4f7GLSttbewDWENl3oNo0vB6z5EuMjXN30MS-fhlzbamw00zvcuJth4aBvdBW9PwdFCt8md7d8J-Hh6fJ-9FPO359fZ3bwwDLO-cAYzY4mxKs-EKWdIKEuErBly3BGjjJRW54WMpnkNI2vNiWKMc8RRaQWdgKtd7jqGz8GlvuqaZFzbau_CkCqCscCkVAJnevmHrsIQfZ5uqzDNvyuV1fVOmRhSim5RrWPT6bipMKq21Va42leb7cU-cag7Z3_lT5cZ3OxAMk2v-yb4f9K-AQcbfhk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111335499</pqid></control><display><type>article</type><title>Broadband loop gap resonator for nitrogen vacancy centers in diamond</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Eisenach, E. R. ; Barry, J. F. ; Pham, L. M. ; Rojas, R. G. ; Englund, D. R. ; Braje, D. A.</creator><creatorcontrib>Eisenach, E. R. ; Barry, J. F. ; Pham, L. M. ; Rojas, R. G. ; Englund, D. R. ; Braje, D. A.</creatorcontrib><description>We present an S-band tunable loop gap resonator (LGR), which provides strong, homogeneous, and directionally uniform broadband microwave (MW) drive for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device provides drive field amplitudes approaching 5 G over a circular area ≳50 mm2 or cylindrical volume ≳250 mm3. The wide 80 MHz device bandwidth allows driving all NV Zeeman resonances for bias magnetic fields below 20 G. The device realizes percent-scale MW drive inhomogeneity; we measure a fractional root-mean-square inhomogeneity σrms = 1.6% and a peak-to-peak variation σpp = 3% over a circular area of 11 mm2 and σrms = 3.2% and σpp = 10.5% over a larger 32 mm2 circular area. We demonstrate incident MW power coupling to the LGR using two methodologies: a printed circuit board-fabricated exciter antenna for deployed compact bulk sensors and an inductive coupling coil suitable for microscope-style imaging. The inductive coupling coil allows for approximately 2π steradian combined optical access above and below the device, ideal for envisioned and existing NV imaging and bulk sensing applications.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5037465</identifier><identifier>PMID: 30278724</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bandwidths ; Broadband ; Circularity ; Diamonds ; Inductive coupling ; Inhomogeneity ; Magnetic resonance ; Resonators ; Scientific apparatus & instruments ; Vacancies</subject><ispartof>Review of scientific instruments, 2018-09, Vol.89 (9), p.094705-094705</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-ec14cd2cd96741354069d267b40e5e2c9c77da063ca3108c7ba52944550508d63</citedby><cites>FETCH-LOGICAL-c414t-ec14cd2cd96741354069d267b40e5e2c9c77da063ca3108c7ba52944550508d63</cites><orcidid>0000-0002-1043-3489 ; 0000-0002-9129-5785 ; 0000000291295785 ; 0000000210433489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5037465$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,76389</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30278724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eisenach, E. R.</creatorcontrib><creatorcontrib>Barry, J. F.</creatorcontrib><creatorcontrib>Pham, L. M.</creatorcontrib><creatorcontrib>Rojas, R. G.</creatorcontrib><creatorcontrib>Englund, D. R.</creatorcontrib><creatorcontrib>Braje, D. A.</creatorcontrib><title>Broadband loop gap resonator for nitrogen vacancy centers in diamond</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We present an S-band tunable loop gap resonator (LGR), which provides strong, homogeneous, and directionally uniform broadband microwave (MW) drive for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device provides drive field amplitudes approaching 5 G over a circular area ≳50 mm2 or cylindrical volume ≳250 mm3. The wide 80 MHz device bandwidth allows driving all NV Zeeman resonances for bias magnetic fields below 20 G. The device realizes percent-scale MW drive inhomogeneity; we measure a fractional root-mean-square inhomogeneity σrms = 1.6% and a peak-to-peak variation σpp = 3% over a circular area of 11 mm2 and σrms = 3.2% and σpp = 10.5% over a larger 32 mm2 circular area. We demonstrate incident MW power coupling to the LGR using two methodologies: a printed circuit board-fabricated exciter antenna for deployed compact bulk sensors and an inductive coupling coil suitable for microscope-style imaging. The inductive coupling coil allows for approximately 2π steradian combined optical access above and below the device, ideal for envisioned and existing NV imaging and bulk sensing applications.</description><subject>Bandwidths</subject><subject>Broadband</subject><subject>Circularity</subject><subject>Diamonds</subject><subject>Inductive coupling</subject><subject>Inhomogeneity</subject><subject>Magnetic resonance</subject><subject>Resonators</subject><subject>Scientific apparatus & instruments</subject><subject>Vacancies</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgiq3VhS8gATcqTM09k6XWKxTc6HrIJGmZMpPUZEbo25vS6sKFgZDNx59zfgDOMZpiJOgtnnJEJRP8AIwxKlUhBaGHYIwQZYWQrByBk5RWKB-O8TEYUURkKQkbg4f7GLSttbewDWENl3oNo0vB6z5EuMjXN30MS-fhlzbamw00zvcuJth4aBvdBW9PwdFCt8md7d8J-Hh6fJ-9FPO359fZ3bwwDLO-cAYzY4mxKs-EKWdIKEuErBly3BGjjJRW54WMpnkNI2vNiWKMc8RRaQWdgKtd7jqGz8GlvuqaZFzbau_CkCqCscCkVAJnevmHrsIQfZ5uqzDNvyuV1fVOmRhSim5RrWPT6bipMKq21Va42leb7cU-cag7Z3_lT5cZ3OxAMk2v-yb4f9K-AQcbfhk</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Eisenach, E. R.</creator><creator>Barry, J. F.</creator><creator>Pham, L. M.</creator><creator>Rojas, R. G.</creator><creator>Englund, D. R.</creator><creator>Braje, D. A.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid><orcidid>https://orcid.org/0000-0002-9129-5785</orcidid><orcidid>https://orcid.org/0000000291295785</orcidid><orcidid>https://orcid.org/0000000210433489</orcidid></search><sort><creationdate>201809</creationdate><title>Broadband loop gap resonator for nitrogen vacancy centers in diamond</title><author>Eisenach, E. R. ; Barry, J. F. ; Pham, L. M. ; Rojas, R. G. ; Englund, D. R. ; Braje, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-ec14cd2cd96741354069d267b40e5e2c9c77da063ca3108c7ba52944550508d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bandwidths</topic><topic>Broadband</topic><topic>Circularity</topic><topic>Diamonds</topic><topic>Inductive coupling</topic><topic>Inhomogeneity</topic><topic>Magnetic resonance</topic><topic>Resonators</topic><topic>Scientific apparatus & instruments</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisenach, E. R.</creatorcontrib><creatorcontrib>Barry, J. F.</creatorcontrib><creatorcontrib>Pham, L. M.</creatorcontrib><creatorcontrib>Rojas, R. G.</creatorcontrib><creatorcontrib>Englund, D. R.</creatorcontrib><creatorcontrib>Braje, D. A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenach, E. R.</au><au>Barry, J. F.</au><au>Pham, L. M.</au><au>Rojas, R. G.</au><au>Englund, D. R.</au><au>Braje, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband loop gap resonator for nitrogen vacancy centers in diamond</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-09</date><risdate>2018</risdate><volume>89</volume><issue>9</issue><spage>094705</spage><epage>094705</epage><pages>094705-094705</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We present an S-band tunable loop gap resonator (LGR), which provides strong, homogeneous, and directionally uniform broadband microwave (MW) drive for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device provides drive field amplitudes approaching 5 G over a circular area ≳50 mm2 or cylindrical volume ≳250 mm3. The wide 80 MHz device bandwidth allows driving all NV Zeeman resonances for bias magnetic fields below 20 G. The device realizes percent-scale MW drive inhomogeneity; we measure a fractional root-mean-square inhomogeneity σrms = 1.6% and a peak-to-peak variation σpp = 3% over a circular area of 11 mm2 and σrms = 3.2% and σpp = 10.5% over a larger 32 mm2 circular area. We demonstrate incident MW power coupling to the LGR using two methodologies: a printed circuit board-fabricated exciter antenna for deployed compact bulk sensors and an inductive coupling coil suitable for microscope-style imaging. The inductive coupling coil allows for approximately 2π steradian combined optical access above and below the device, ideal for envisioned and existing NV imaging and bulk sensing applications.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30278724</pmid><doi>10.1063/1.5037465</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid><orcidid>https://orcid.org/0000-0002-9129-5785</orcidid><orcidid>https://orcid.org/0000000291295785</orcidid><orcidid>https://orcid.org/0000000210433489</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2018-09, Vol.89 (9), p.094705-094705 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_proquest_journals_2111335499 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Bandwidths Broadband Circularity Diamonds Inductive coupling Inhomogeneity Magnetic resonance Resonators Scientific apparatus & instruments Vacancies |
title | Broadband loop gap resonator for nitrogen vacancy centers in diamond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20loop%20gap%20resonator%20for%20nitrogen%20vacancy%20centers%20in%20diamond&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Eisenach,%20E.%20R.&rft.date=2018-09&rft.volume=89&rft.issue=9&rft.spage=094705&rft.epage=094705&rft.pages=094705-094705&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5037465&rft_dat=%3Cproquest_cross%3E2116128961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111335499&rft_id=info:pmid/30278724&rfr_iscdi=true |