DFT study on the Au( i )-catalyzed cyclization of indole-allenoate: counterion and solvent effects

A computational study using the B3LYP density functional was carried out to explore the effects of counterions and solvents on the Au( i )-catalyzed cyclization reaction of indole-allenoate to form dihydrocyclopenta[ b ]indole derivatives. The optimal reaction path includes intramolecular cyclizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2018, Vol.42 (19), p.15618-15628
Hauptverfasser: Yuan, Binfang, He, Rongxing, Guo, Xiaogang, Shen, Wei, Zhang, Fengying, Xu, Yanyan, Li, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15628
container_issue 19
container_start_page 15618
container_title New journal of chemistry
container_volume 42
creator Yuan, Binfang
He, Rongxing
Guo, Xiaogang
Shen, Wei
Zhang, Fengying
Xu, Yanyan
Li, Ming
description A computational study using the B3LYP density functional was carried out to explore the effects of counterions and solvents on the Au( i )-catalyzed cyclization reaction of indole-allenoate to form dihydrocyclopenta[ b ]indole derivatives. The optimal reaction path includes intramolecular cyclization and proton transfer steps. In the first process, the counterions Cl − , BF 4 − and OTf − act as hydrogen-bond acceptors to promote the intramolecular cyclization between the C1 and C5 atoms. In the proton transfer step, the anions greatly reduce the energy barrier of proton migration, in the form of a proton-transfer shuttle. More importantly, the Bronsted/Lewis basicity of the counterions (Cl − > OTf − > BF 4 − ) turns out to be the primary reason for the difference in the counterion catalytic activity in the proton-transfer process. During the protonation of the counterion, the catalytic capacities of the counterions show significant differences according to the series Cl − > OTf − > BF 4 − , and the order of the catalytic ability of the counterions was found to be Cl − < OTf − < BF 4 − in the deprotonation of the counterion-H. Interestingly, the strong coordinating capability of the solvents (DMF and DMSO vs. PhCH 3 ) was found to be another important factor that critically affects the reaction yield (0%, 0% and 95% yield, respectively). Overall, our calculations not only explain the experimental phenomena well, but also put forward some guidance and advice for the selection of counterions and solvents for transition metal-catalyzed reactions, including proton-transfer processes.
doi_str_mv 10.1039/C8NJ02375A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111251745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111251745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-b38a6a474fb184b3715400170e7dcd18f9e5043d33432e1b8fa9408d96a3778d3</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxYMoOKcvfoKALypUc5u0aX0b0_mHoS_zuaTJDXbUZibpoPv0dkzw6Rw4P869HEIugd0B4-X9vHh_YymX2eyITIDnZVKmORyPHoRIWCbyU3IWwpoxAJnDhNSPixUNsTcDdR2NX0hn_TVt6E2iVVTtsEND9aDbZqdiMxLO0qYzrsVEtS12TkV8oNr1XUS_z1VnaHDtFrtI0VrUMZyTE6vagBd_OiWfi6fV_CVZfjy_zmfLRKdZGZOaFypXQgpbQyFqLiET45uSoTTaQGFLzJjghnPBU4S6sKoUrDBlrriUheFTcnXo3Xj302OI1dr1vhtPVikApBlIkY3U7YHS3oXg0VYb33wrP1TAqv2G1f-G_Bds1mJ_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111251745</pqid></control><display><type>article</type><title>DFT study on the Au( i )-catalyzed cyclization of indole-allenoate: counterion and solvent effects</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yuan, Binfang ; He, Rongxing ; Guo, Xiaogang ; Shen, Wei ; Zhang, Fengying ; Xu, Yanyan ; Li, Ming</creator><creatorcontrib>Yuan, Binfang ; He, Rongxing ; Guo, Xiaogang ; Shen, Wei ; Zhang, Fengying ; Xu, Yanyan ; Li, Ming</creatorcontrib><description>A computational study using the B3LYP density functional was carried out to explore the effects of counterions and solvents on the Au( i )-catalyzed cyclization reaction of indole-allenoate to form dihydrocyclopenta[ b ]indole derivatives. The optimal reaction path includes intramolecular cyclization and proton transfer steps. In the first process, the counterions Cl − , BF 4 − and OTf − act as hydrogen-bond acceptors to promote the intramolecular cyclization between the C1 and C5 atoms. In the proton transfer step, the anions greatly reduce the energy barrier of proton migration, in the form of a proton-transfer shuttle. More importantly, the Bronsted/Lewis basicity of the counterions (Cl − &gt; OTf − &gt; BF 4 − ) turns out to be the primary reason for the difference in the counterion catalytic activity in the proton-transfer process. During the protonation of the counterion, the catalytic capacities of the counterions show significant differences according to the series Cl − &gt; OTf − &gt; BF 4 − , and the order of the catalytic ability of the counterions was found to be Cl − &lt; OTf − &lt; BF 4 − in the deprotonation of the counterion-H. Interestingly, the strong coordinating capability of the solvents (DMF and DMSO vs. PhCH 3 ) was found to be another important factor that critically affects the reaction yield (0%, 0% and 95% yield, respectively). Overall, our calculations not only explain the experimental phenomena well, but also put forward some guidance and advice for the selection of counterions and solvents for transition metal-catalyzed reactions, including proton-transfer processes.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/C8NJ02375A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Basicity ; Catalysis ; Catalytic activity ; Chemical reactions ; Density functional theory ; Mathematical analysis ; Migration ; Protonation ; Protons ; Solvent effect ; Solvents</subject><ispartof>New journal of chemistry, 2018, Vol.42 (19), p.15618-15628</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-b38a6a474fb184b3715400170e7dcd18f9e5043d33432e1b8fa9408d96a3778d3</citedby><cites>FETCH-LOGICAL-c259t-b38a6a474fb184b3715400170e7dcd18f9e5043d33432e1b8fa9408d96a3778d3</cites><orcidid>0000-0003-3100-2722 ; 0000-0001-7785-3210 ; 0000-0003-2245-6140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Yuan, Binfang</creatorcontrib><creatorcontrib>He, Rongxing</creatorcontrib><creatorcontrib>Guo, Xiaogang</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Zhang, Fengying</creatorcontrib><creatorcontrib>Xu, Yanyan</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><title>DFT study on the Au( i )-catalyzed cyclization of indole-allenoate: counterion and solvent effects</title><title>New journal of chemistry</title><description>A computational study using the B3LYP density functional was carried out to explore the effects of counterions and solvents on the Au( i )-catalyzed cyclization reaction of indole-allenoate to form dihydrocyclopenta[ b ]indole derivatives. The optimal reaction path includes intramolecular cyclization and proton transfer steps. In the first process, the counterions Cl − , BF 4 − and OTf − act as hydrogen-bond acceptors to promote the intramolecular cyclization between the C1 and C5 atoms. In the proton transfer step, the anions greatly reduce the energy barrier of proton migration, in the form of a proton-transfer shuttle. More importantly, the Bronsted/Lewis basicity of the counterions (Cl − &gt; OTf − &gt; BF 4 − ) turns out to be the primary reason for the difference in the counterion catalytic activity in the proton-transfer process. During the protonation of the counterion, the catalytic capacities of the counterions show significant differences according to the series Cl − &gt; OTf − &gt; BF 4 − , and the order of the catalytic ability of the counterions was found to be Cl − &lt; OTf − &lt; BF 4 − in the deprotonation of the counterion-H. Interestingly, the strong coordinating capability of the solvents (DMF and DMSO vs. PhCH 3 ) was found to be another important factor that critically affects the reaction yield (0%, 0% and 95% yield, respectively). Overall, our calculations not only explain the experimental phenomena well, but also put forward some guidance and advice for the selection of counterions and solvents for transition metal-catalyzed reactions, including proton-transfer processes.</description><subject>Basicity</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemical reactions</subject><subject>Density functional theory</subject><subject>Mathematical analysis</subject><subject>Migration</subject><subject>Protonation</subject><subject>Protons</subject><subject>Solvent effect</subject><subject>Solvents</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkF9LwzAUxYMoOKcvfoKALypUc5u0aX0b0_mHoS_zuaTJDXbUZibpoPv0dkzw6Rw4P869HEIugd0B4-X9vHh_YymX2eyITIDnZVKmORyPHoRIWCbyU3IWwpoxAJnDhNSPixUNsTcDdR2NX0hn_TVt6E2iVVTtsEND9aDbZqdiMxLO0qYzrsVEtS12TkV8oNr1XUS_z1VnaHDtFrtI0VrUMZyTE6vagBd_OiWfi6fV_CVZfjy_zmfLRKdZGZOaFypXQgpbQyFqLiET45uSoTTaQGFLzJjghnPBU4S6sKoUrDBlrriUheFTcnXo3Xj302OI1dr1vhtPVikApBlIkY3U7YHS3oXg0VYb33wrP1TAqv2G1f-G_Bds1mJ_</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Yuan, Binfang</creator><creator>He, Rongxing</creator><creator>Guo, Xiaogang</creator><creator>Shen, Wei</creator><creator>Zhang, Fengying</creator><creator>Xu, Yanyan</creator><creator>Li, Ming</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope><orcidid>https://orcid.org/0000-0003-3100-2722</orcidid><orcidid>https://orcid.org/0000-0001-7785-3210</orcidid><orcidid>https://orcid.org/0000-0003-2245-6140</orcidid></search><sort><creationdate>2018</creationdate><title>DFT study on the Au( i )-catalyzed cyclization of indole-allenoate: counterion and solvent effects</title><author>Yuan, Binfang ; He, Rongxing ; Guo, Xiaogang ; Shen, Wei ; Zhang, Fengying ; Xu, Yanyan ; Li, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-b38a6a474fb184b3715400170e7dcd18f9e5043d33432e1b8fa9408d96a3778d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basicity</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemical reactions</topic><topic>Density functional theory</topic><topic>Mathematical analysis</topic><topic>Migration</topic><topic>Protonation</topic><topic>Protons</topic><topic>Solvent effect</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Binfang</creatorcontrib><creatorcontrib>He, Rongxing</creatorcontrib><creatorcontrib>Guo, Xiaogang</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Zhang, Fengying</creatorcontrib><creatorcontrib>Xu, Yanyan</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Binfang</au><au>He, Rongxing</au><au>Guo, Xiaogang</au><au>Shen, Wei</au><au>Zhang, Fengying</au><au>Xu, Yanyan</au><au>Li, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT study on the Au( i )-catalyzed cyclization of indole-allenoate: counterion and solvent effects</atitle><jtitle>New journal of chemistry</jtitle><date>2018</date><risdate>2018</risdate><volume>42</volume><issue>19</issue><spage>15618</spage><epage>15628</epage><pages>15618-15628</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>A computational study using the B3LYP density functional was carried out to explore the effects of counterions and solvents on the Au( i )-catalyzed cyclization reaction of indole-allenoate to form dihydrocyclopenta[ b ]indole derivatives. The optimal reaction path includes intramolecular cyclization and proton transfer steps. In the first process, the counterions Cl − , BF 4 − and OTf − act as hydrogen-bond acceptors to promote the intramolecular cyclization between the C1 and C5 atoms. In the proton transfer step, the anions greatly reduce the energy barrier of proton migration, in the form of a proton-transfer shuttle. More importantly, the Bronsted/Lewis basicity of the counterions (Cl − &gt; OTf − &gt; BF 4 − ) turns out to be the primary reason for the difference in the counterion catalytic activity in the proton-transfer process. During the protonation of the counterion, the catalytic capacities of the counterions show significant differences according to the series Cl − &gt; OTf − &gt; BF 4 − , and the order of the catalytic ability of the counterions was found to be Cl − &lt; OTf − &lt; BF 4 − in the deprotonation of the counterion-H. Interestingly, the strong coordinating capability of the solvents (DMF and DMSO vs. PhCH 3 ) was found to be another important factor that critically affects the reaction yield (0%, 0% and 95% yield, respectively). Overall, our calculations not only explain the experimental phenomena well, but also put forward some guidance and advice for the selection of counterions and solvents for transition metal-catalyzed reactions, including proton-transfer processes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8NJ02375A</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3100-2722</orcidid><orcidid>https://orcid.org/0000-0001-7785-3210</orcidid><orcidid>https://orcid.org/0000-0003-2245-6140</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2018, Vol.42 (19), p.15618-15628
issn 1144-0546
1369-9261
language eng
recordid cdi_proquest_journals_2111251745
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Basicity
Catalysis
Catalytic activity
Chemical reactions
Density functional theory
Mathematical analysis
Migration
Protonation
Protons
Solvent effect
Solvents
title DFT study on the Au( i )-catalyzed cyclization of indole-allenoate: counterion and solvent effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20study%20on%20the%20Au(%20i%20)-catalyzed%20cyclization%20of%20indole-allenoate:%20counterion%20and%20solvent%20effects&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Yuan,%20Binfang&rft.date=2018&rft.volume=42&rft.issue=19&rft.spage=15618&rft.epage=15628&rft.pages=15618-15628&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/C8NJ02375A&rft_dat=%3Cproquest_cross%3E2111251745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111251745&rft_id=info:pmid/&rfr_iscdi=true