Gate‐Induced Massive and Reversible Phase Transition of VO2 Channels Using Solid‐State Proton Electrolytes
The use of gate bias to control electronic phases in VO2, an archetypical correlated oxide, offers a powerful method to probe their underlying physics, as well as for the potential to develop novel electronic devices. Up to date, purely electrostatic gating in 3‐terminal devices with correlated chan...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2018-09, Vol.28 (39), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 39 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 28 |
creator | Jo, Minguk Lee, Hyeon Jun Oh, Chadol Yoon, Hyojin Jo, Ji Young Son, Junwoo |
description | The use of gate bias to control electronic phases in VO2, an archetypical correlated oxide, offers a powerful method to probe their underlying physics, as well as for the potential to develop novel electronic devices. Up to date, purely electrostatic gating in 3‐terminal devices with correlated channel shows the limited electrostatic gating efficiency due to insufficiently induced carrier density and short electrostatic screening length. Here massive and reversible conductance modulation is shown in a VO2 channel by applying gate bias VG at low voltage by a solid‐state proton (H+) conductor. By using porous silica to modulate H+ concentration in VO2, gate‐induced reversible insulator‐to‐metal (I‐to‐M) phase transition at low voltage, and unprecedented two‐step insulator‐to‐metal‐to‐insulator (I‐to‐M‐to‐I) phase transition at high voltage are shown. VG strongly and efficiently injects H+ into the VO2 channel without creating oxygen deficiencies; this H+‐induced electronic phase transition occurs by giant modulation (≈7%) of out‐of‐plane lattice parameters as a result of H+‐induced chemical expansion. The results clarify the role of H+ on the electronic state of the correlated phases, and demonstrate the potentials for electronic devices that use ionic/electronic coupling.
Gate‐induced massive and reversible phase transition is demonstrated in VO2 channels using solid‐state proton electrolytes. Applying gate bias effectively injects large numbers of H+ ions without creating oxygen deficiencies and causes a two‐step insulator‐to‐metal‐to‐insulator phase transition and a hydrogen‐defect‐induced chemical expansion at room temperature. This observation presents an opportunity to develop new types of three‐terminal electronic devices. |
doi_str_mv | 10.1002/adfm.201802003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2111120277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111120277</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3383-6439750497a2998e917f4beb78720e9ec511b3a1b69fcd60049b9635d0a57ec93</originalsourceid><addsrcrecordid>eNo9kM9OwkAQhzdGExG9et7Ec3H_tN3ukSAgCQQiYLxttu0UlpQt7hYMNx_BZ_RJLMEwl5lJvvwm8yH0SEmHEsKedV5sO4zQhDBC-BVq0ZjGAScsub7M9OMW3Xm_IYQKwcMWskNdw-_3z8jm-wxyPNHemwNgbXP8Bgdw3qQl4Nlae8ALp603taksrgr8PmW4t9bWQunx0hu7wvOqNHmTNq-bVDxzVd2g_RKy2lXlsQZ_j24KXXp4-O9ttBz0F73XYDwdjnrdcbDiPOFBHHIpIhJKoZmUCUgqijCFVCSCEZCQRZSmXNM0lkWWx6QhUxnzKCc6EpBJ3kZP59ydqz734Gu1qfbONicVo00xwpr_20ieqS9TwlHtnNlqd1SUqJNQdRKqLkJV92UwuWz8DyxVbZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111120277</pqid></control><display><type>article</type><title>Gate‐Induced Massive and Reversible Phase Transition of VO2 Channels Using Solid‐State Proton Electrolytes</title><source>Access via Wiley Online Library</source><creator>Jo, Minguk ; Lee, Hyeon Jun ; Oh, Chadol ; Yoon, Hyojin ; Jo, Ji Young ; Son, Junwoo</creator><creatorcontrib>Jo, Minguk ; Lee, Hyeon Jun ; Oh, Chadol ; Yoon, Hyojin ; Jo, Ji Young ; Son, Junwoo</creatorcontrib><description>The use of gate bias to control electronic phases in VO2, an archetypical correlated oxide, offers a powerful method to probe their underlying physics, as well as for the potential to develop novel electronic devices. Up to date, purely electrostatic gating in 3‐terminal devices with correlated channel shows the limited electrostatic gating efficiency due to insufficiently induced carrier density and short electrostatic screening length. Here massive and reversible conductance modulation is shown in a VO2 channel by applying gate bias VG at low voltage by a solid‐state proton (H+) conductor. By using porous silica to modulate H+ concentration in VO2, gate‐induced reversible insulator‐to‐metal (I‐to‐M) phase transition at low voltage, and unprecedented two‐step insulator‐to‐metal‐to‐insulator (I‐to‐M‐to‐I) phase transition at high voltage are shown. VG strongly and efficiently injects H+ into the VO2 channel without creating oxygen deficiencies; this H+‐induced electronic phase transition occurs by giant modulation (≈7%) of out‐of‐plane lattice parameters as a result of H+‐induced chemical expansion. The results clarify the role of H+ on the electronic state of the correlated phases, and demonstrate the potentials for electronic devices that use ionic/electronic coupling.
Gate‐induced massive and reversible phase transition is demonstrated in VO2 channels using solid‐state proton electrolytes. Applying gate bias effectively injects large numbers of H+ ions without creating oxygen deficiencies and causes a two‐step insulator‐to‐metal‐to‐insulator phase transition and a hydrogen‐defect‐induced chemical expansion at room temperature. This observation presents an opportunity to develop new types of three‐terminal electronic devices.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201802003</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bias ; Carrier density ; chemical expansion ; Conductors ; Correlation ; Electron states ; Electronic devices ; High voltages ; ionotronics ; Lattice parameters ; Low voltage ; Materials science ; metal–insulator transition ; Modulation ; Molten salt electrolytes ; Organic chemistry ; Phase transitions ; proton gating ; Resistance ; Silicon dioxide ; Solid electrolytes ; vanadium dioxide ; Vanadium oxides</subject><ispartof>Advanced functional materials, 2018-09, Vol.28 (39), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5363-1987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201802003$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201802003$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids></links><search><creatorcontrib>Jo, Minguk</creatorcontrib><creatorcontrib>Lee, Hyeon Jun</creatorcontrib><creatorcontrib>Oh, Chadol</creatorcontrib><creatorcontrib>Yoon, Hyojin</creatorcontrib><creatorcontrib>Jo, Ji Young</creatorcontrib><creatorcontrib>Son, Junwoo</creatorcontrib><title>Gate‐Induced Massive and Reversible Phase Transition of VO2 Channels Using Solid‐State Proton Electrolytes</title><title>Advanced functional materials</title><description>The use of gate bias to control electronic phases in VO2, an archetypical correlated oxide, offers a powerful method to probe their underlying physics, as well as for the potential to develop novel electronic devices. Up to date, purely electrostatic gating in 3‐terminal devices with correlated channel shows the limited electrostatic gating efficiency due to insufficiently induced carrier density and short electrostatic screening length. Here massive and reversible conductance modulation is shown in a VO2 channel by applying gate bias VG at low voltage by a solid‐state proton (H+) conductor. By using porous silica to modulate H+ concentration in VO2, gate‐induced reversible insulator‐to‐metal (I‐to‐M) phase transition at low voltage, and unprecedented two‐step insulator‐to‐metal‐to‐insulator (I‐to‐M‐to‐I) phase transition at high voltage are shown. VG strongly and efficiently injects H+ into the VO2 channel without creating oxygen deficiencies; this H+‐induced electronic phase transition occurs by giant modulation (≈7%) of out‐of‐plane lattice parameters as a result of H+‐induced chemical expansion. The results clarify the role of H+ on the electronic state of the correlated phases, and demonstrate the potentials for electronic devices that use ionic/electronic coupling.
Gate‐induced massive and reversible phase transition is demonstrated in VO2 channels using solid‐state proton electrolytes. Applying gate bias effectively injects large numbers of H+ ions without creating oxygen deficiencies and causes a two‐step insulator‐to‐metal‐to‐insulator phase transition and a hydrogen‐defect‐induced chemical expansion at room temperature. This observation presents an opportunity to develop new types of three‐terminal electronic devices.</description><subject>Bias</subject><subject>Carrier density</subject><subject>chemical expansion</subject><subject>Conductors</subject><subject>Correlation</subject><subject>Electron states</subject><subject>Electronic devices</subject><subject>High voltages</subject><subject>ionotronics</subject><subject>Lattice parameters</subject><subject>Low voltage</subject><subject>Materials science</subject><subject>metal–insulator transition</subject><subject>Modulation</subject><subject>Molten salt electrolytes</subject><subject>Organic chemistry</subject><subject>Phase transitions</subject><subject>proton gating</subject><subject>Resistance</subject><subject>Silicon dioxide</subject><subject>Solid electrolytes</subject><subject>vanadium dioxide</subject><subject>Vanadium oxides</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM9OwkAQhzdGExG9et7Ec3H_tN3ukSAgCQQiYLxttu0UlpQt7hYMNx_BZ_RJLMEwl5lJvvwm8yH0SEmHEsKedV5sO4zQhDBC-BVq0ZjGAScsub7M9OMW3Xm_IYQKwcMWskNdw-_3z8jm-wxyPNHemwNgbXP8Bgdw3qQl4Nlae8ALp603taksrgr8PmW4t9bWQunx0hu7wvOqNHmTNq-bVDxzVd2g_RKy2lXlsQZ_j24KXXp4-O9ttBz0F73XYDwdjnrdcbDiPOFBHHIpIhJKoZmUCUgqijCFVCSCEZCQRZSmXNM0lkWWx6QhUxnzKCc6EpBJ3kZP59ydqz734Gu1qfbONicVo00xwpr_20ieqS9TwlHtnNlqd1SUqJNQdRKqLkJV92UwuWz8DyxVbZc</recordid><startdate>20180926</startdate><enddate>20180926</enddate><creator>Jo, Minguk</creator><creator>Lee, Hyeon Jun</creator><creator>Oh, Chadol</creator><creator>Yoon, Hyojin</creator><creator>Jo, Ji Young</creator><creator>Son, Junwoo</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5363-1987</orcidid></search><sort><creationdate>20180926</creationdate><title>Gate‐Induced Massive and Reversible Phase Transition of VO2 Channels Using Solid‐State Proton Electrolytes</title><author>Jo, Minguk ; Lee, Hyeon Jun ; Oh, Chadol ; Yoon, Hyojin ; Jo, Ji Young ; Son, Junwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3383-6439750497a2998e917f4beb78720e9ec511b3a1b69fcd60049b9635d0a57ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bias</topic><topic>Carrier density</topic><topic>chemical expansion</topic><topic>Conductors</topic><topic>Correlation</topic><topic>Electron states</topic><topic>Electronic devices</topic><topic>High voltages</topic><topic>ionotronics</topic><topic>Lattice parameters</topic><topic>Low voltage</topic><topic>Materials science</topic><topic>metal–insulator transition</topic><topic>Modulation</topic><topic>Molten salt electrolytes</topic><topic>Organic chemistry</topic><topic>Phase transitions</topic><topic>proton gating</topic><topic>Resistance</topic><topic>Silicon dioxide</topic><topic>Solid electrolytes</topic><topic>vanadium dioxide</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Minguk</creatorcontrib><creatorcontrib>Lee, Hyeon Jun</creatorcontrib><creatorcontrib>Oh, Chadol</creatorcontrib><creatorcontrib>Yoon, Hyojin</creatorcontrib><creatorcontrib>Jo, Ji Young</creatorcontrib><creatorcontrib>Son, Junwoo</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Minguk</au><au>Lee, Hyeon Jun</au><au>Oh, Chadol</au><au>Yoon, Hyojin</au><au>Jo, Ji Young</au><au>Son, Junwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate‐Induced Massive and Reversible Phase Transition of VO2 Channels Using Solid‐State Proton Electrolytes</atitle><jtitle>Advanced functional materials</jtitle><date>2018-09-26</date><risdate>2018</risdate><volume>28</volume><issue>39</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The use of gate bias to control electronic phases in VO2, an archetypical correlated oxide, offers a powerful method to probe their underlying physics, as well as for the potential to develop novel electronic devices. Up to date, purely electrostatic gating in 3‐terminal devices with correlated channel shows the limited electrostatic gating efficiency due to insufficiently induced carrier density and short electrostatic screening length. Here massive and reversible conductance modulation is shown in a VO2 channel by applying gate bias VG at low voltage by a solid‐state proton (H+) conductor. By using porous silica to modulate H+ concentration in VO2, gate‐induced reversible insulator‐to‐metal (I‐to‐M) phase transition at low voltage, and unprecedented two‐step insulator‐to‐metal‐to‐insulator (I‐to‐M‐to‐I) phase transition at high voltage are shown. VG strongly and efficiently injects H+ into the VO2 channel without creating oxygen deficiencies; this H+‐induced electronic phase transition occurs by giant modulation (≈7%) of out‐of‐plane lattice parameters as a result of H+‐induced chemical expansion. The results clarify the role of H+ on the electronic state of the correlated phases, and demonstrate the potentials for electronic devices that use ionic/electronic coupling.
Gate‐induced massive and reversible phase transition is demonstrated in VO2 channels using solid‐state proton electrolytes. Applying gate bias effectively injects large numbers of H+ ions without creating oxygen deficiencies and causes a two‐step insulator‐to‐metal‐to‐insulator phase transition and a hydrogen‐defect‐induced chemical expansion at room temperature. This observation presents an opportunity to develop new types of three‐terminal electronic devices.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201802003</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5363-1987</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2018-09, Vol.28 (39), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2111120277 |
source | Access via Wiley Online Library |
subjects | Bias Carrier density chemical expansion Conductors Correlation Electron states Electronic devices High voltages ionotronics Lattice parameters Low voltage Materials science metal–insulator transition Modulation Molten salt electrolytes Organic chemistry Phase transitions proton gating Resistance Silicon dioxide Solid electrolytes vanadium dioxide Vanadium oxides |
title | Gate‐Induced Massive and Reversible Phase Transition of VO2 Channels Using Solid‐State Proton Electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate%E2%80%90Induced%20Massive%20and%20Reversible%20Phase%20Transition%20of%20VO2%20Channels%20Using%20Solid%E2%80%90State%20Proton%20Electrolytes&rft.jtitle=Advanced%20functional%20materials&rft.au=Jo,%20Minguk&rft.date=2018-09-26&rft.volume=28&rft.issue=39&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201802003&rft_dat=%3Cproquest_wiley%3E2111120277%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111120277&rft_id=info:pmid/&rfr_iscdi=true |