Gate‐Induced Massive and Reversible Phase Transition of VO2 Channels Using Solid‐State Proton Electrolytes

The use of gate bias to control electronic phases in VO2, an archetypical correlated oxide, offers a powerful method to probe their underlying physics, as well as for the potential to develop novel electronic devices. Up to date, purely electrostatic gating in 3‐terminal devices with correlated chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-09, Vol.28 (39), p.n/a
Hauptverfasser: Jo, Minguk, Lee, Hyeon Jun, Oh, Chadol, Yoon, Hyojin, Jo, Ji Young, Son, Junwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 39
container_start_page
container_title Advanced functional materials
container_volume 28
creator Jo, Minguk
Lee, Hyeon Jun
Oh, Chadol
Yoon, Hyojin
Jo, Ji Young
Son, Junwoo
description The use of gate bias to control electronic phases in VO2, an archetypical correlated oxide, offers a powerful method to probe their underlying physics, as well as for the potential to develop novel electronic devices. Up to date, purely electrostatic gating in 3‐terminal devices with correlated channel shows the limited electrostatic gating efficiency due to insufficiently induced carrier density and short electrostatic screening length. Here massive and reversible conductance modulation is shown in a VO2 channel by applying gate bias VG at low voltage by a solid‐state proton (H+) conductor. By using porous silica to modulate H+ concentration in VO2, gate‐induced reversible insulator‐to‐metal (I‐to‐M) phase transition at low voltage, and unprecedented two‐step insulator‐to‐metal‐to‐insulator (I‐to‐M‐to‐I) phase transition at high voltage are shown. VG strongly and efficiently injects H+ into the VO2 channel without creating oxygen deficiencies; this H+‐induced electronic phase transition occurs by giant modulation (≈7%) of out‐of‐plane lattice parameters as a result of H+‐induced chemical expansion. The results clarify the role of H+ on the electronic state of the correlated phases, and demonstrate the potentials for electronic devices that use ionic/electronic coupling. Gate‐induced massive and reversible phase transition is demonstrated in VO2 channels using solid‐state proton electrolytes. Applying gate bias effectively injects large numbers of H+ ions without creating oxygen deficiencies and causes a two‐step insulator‐to‐metal‐to‐insulator phase transition and a hydrogen‐defect‐induced chemical expansion at room temperature. This observation presents an opportunity to develop new types of three‐terminal electronic devices.
doi_str_mv 10.1002/adfm.201802003
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2111120277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111120277</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3383-6439750497a2998e917f4beb78720e9ec511b3a1b69fcd60049b9635d0a57ec93</originalsourceid><addsrcrecordid>eNo9kM9OwkAQhzdGExG9et7Ec3H_tN3ukSAgCQQiYLxttu0UlpQt7hYMNx_BZ_RJLMEwl5lJvvwm8yH0SEmHEsKedV5sO4zQhDBC-BVq0ZjGAScsub7M9OMW3Xm_IYQKwcMWskNdw-_3z8jm-wxyPNHemwNgbXP8Bgdw3qQl4Nlae8ALp603taksrgr8PmW4t9bWQunx0hu7wvOqNHmTNq-bVDxzVd2g_RKy2lXlsQZ_j24KXXp4-O9ttBz0F73XYDwdjnrdcbDiPOFBHHIpIhJKoZmUCUgqijCFVCSCEZCQRZSmXNM0lkWWx6QhUxnzKCc6EpBJ3kZP59ydqz734Gu1qfbONicVo00xwpr_20ieqS9TwlHtnNlqd1SUqJNQdRKqLkJV92UwuWz8DyxVbZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111120277</pqid></control><display><type>article</type><title>Gate‐Induced Massive and Reversible Phase Transition of VO2 Channels Using Solid‐State Proton Electrolytes</title><source>Access via Wiley Online Library</source><creator>Jo, Minguk ; Lee, Hyeon Jun ; Oh, Chadol ; Yoon, Hyojin ; Jo, Ji Young ; Son, Junwoo</creator><creatorcontrib>Jo, Minguk ; Lee, Hyeon Jun ; Oh, Chadol ; Yoon, Hyojin ; Jo, Ji Young ; Son, Junwoo</creatorcontrib><description>The use of gate bias to control electronic phases in VO2, an archetypical correlated oxide, offers a powerful method to probe their underlying physics, as well as for the potential to develop novel electronic devices. Up to date, purely electrostatic gating in 3‐terminal devices with correlated channel shows the limited electrostatic gating efficiency due to insufficiently induced carrier density and short electrostatic screening length. Here massive and reversible conductance modulation is shown in a VO2 channel by applying gate bias VG at low voltage by a solid‐state proton (H+) conductor. By using porous silica to modulate H+ concentration in VO2, gate‐induced reversible insulator‐to‐metal (I‐to‐M) phase transition at low voltage, and unprecedented two‐step insulator‐to‐metal‐to‐insulator (I‐to‐M‐to‐I) phase transition at high voltage are shown. VG strongly and efficiently injects H+ into the VO2 channel without creating oxygen deficiencies; this H+‐induced electronic phase transition occurs by giant modulation (≈7%) of out‐of‐plane lattice parameters as a result of H+‐induced chemical expansion. The results clarify the role of H+ on the electronic state of the correlated phases, and demonstrate the potentials for electronic devices that use ionic/electronic coupling. Gate‐induced massive and reversible phase transition is demonstrated in VO2 channels using solid‐state proton electrolytes. Applying gate bias effectively injects large numbers of H+ ions without creating oxygen deficiencies and causes a two‐step insulator‐to‐metal‐to‐insulator phase transition and a hydrogen‐defect‐induced chemical expansion at room temperature. This observation presents an opportunity to develop new types of three‐terminal electronic devices.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201802003</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bias ; Carrier density ; chemical expansion ; Conductors ; Correlation ; Electron states ; Electronic devices ; High voltages ; ionotronics ; Lattice parameters ; Low voltage ; Materials science ; metal–insulator transition ; Modulation ; Molten salt electrolytes ; Organic chemistry ; Phase transitions ; proton gating ; Resistance ; Silicon dioxide ; Solid electrolytes ; vanadium dioxide ; Vanadium oxides</subject><ispartof>Advanced functional materials, 2018-09, Vol.28 (39), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5363-1987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201802003$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201802003$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids></links><search><creatorcontrib>Jo, Minguk</creatorcontrib><creatorcontrib>Lee, Hyeon Jun</creatorcontrib><creatorcontrib>Oh, Chadol</creatorcontrib><creatorcontrib>Yoon, Hyojin</creatorcontrib><creatorcontrib>Jo, Ji Young</creatorcontrib><creatorcontrib>Son, Junwoo</creatorcontrib><title>Gate‐Induced Massive and Reversible Phase Transition of VO2 Channels Using Solid‐State Proton Electrolytes</title><title>Advanced functional materials</title><description>The use of gate bias to control electronic phases in VO2, an archetypical correlated oxide, offers a powerful method to probe their underlying physics, as well as for the potential to develop novel electronic devices. Up to date, purely electrostatic gating in 3‐terminal devices with correlated channel shows the limited electrostatic gating efficiency due to insufficiently induced carrier density and short electrostatic screening length. Here massive and reversible conductance modulation is shown in a VO2 channel by applying gate bias VG at low voltage by a solid‐state proton (H+) conductor. By using porous silica to modulate H+ concentration in VO2, gate‐induced reversible insulator‐to‐metal (I‐to‐M) phase transition at low voltage, and unprecedented two‐step insulator‐to‐metal‐to‐insulator (I‐to‐M‐to‐I) phase transition at high voltage are shown. VG strongly and efficiently injects H+ into the VO2 channel without creating oxygen deficiencies; this H+‐induced electronic phase transition occurs by giant modulation (≈7%) of out‐of‐plane lattice parameters as a result of H+‐induced chemical expansion. The results clarify the role of H+ on the electronic state of the correlated phases, and demonstrate the potentials for electronic devices that use ionic/electronic coupling. Gate‐induced massive and reversible phase transition is demonstrated in VO2 channels using solid‐state proton electrolytes. Applying gate bias effectively injects large numbers of H+ ions without creating oxygen deficiencies and causes a two‐step insulator‐to‐metal‐to‐insulator phase transition and a hydrogen‐defect‐induced chemical expansion at room temperature. This observation presents an opportunity to develop new types of three‐terminal electronic devices.</description><subject>Bias</subject><subject>Carrier density</subject><subject>chemical expansion</subject><subject>Conductors</subject><subject>Correlation</subject><subject>Electron states</subject><subject>Electronic devices</subject><subject>High voltages</subject><subject>ionotronics</subject><subject>Lattice parameters</subject><subject>Low voltage</subject><subject>Materials science</subject><subject>metal–insulator transition</subject><subject>Modulation</subject><subject>Molten salt electrolytes</subject><subject>Organic chemistry</subject><subject>Phase transitions</subject><subject>proton gating</subject><subject>Resistance</subject><subject>Silicon dioxide</subject><subject>Solid electrolytes</subject><subject>vanadium dioxide</subject><subject>Vanadium oxides</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM9OwkAQhzdGExG9et7Ec3H_tN3ukSAgCQQiYLxttu0UlpQt7hYMNx_BZ_RJLMEwl5lJvvwm8yH0SEmHEsKedV5sO4zQhDBC-BVq0ZjGAScsub7M9OMW3Xm_IYQKwcMWskNdw-_3z8jm-wxyPNHemwNgbXP8Bgdw3qQl4Nlae8ALp603taksrgr8PmW4t9bWQunx0hu7wvOqNHmTNq-bVDxzVd2g_RKy2lXlsQZ_j24KXXp4-O9ttBz0F73XYDwdjnrdcbDiPOFBHHIpIhJKoZmUCUgqijCFVCSCEZCQRZSmXNM0lkWWx6QhUxnzKCc6EpBJ3kZP59ydqz734Gu1qfbONicVo00xwpr_20ieqS9TwlHtnNlqd1SUqJNQdRKqLkJV92UwuWz8DyxVbZc</recordid><startdate>20180926</startdate><enddate>20180926</enddate><creator>Jo, Minguk</creator><creator>Lee, Hyeon Jun</creator><creator>Oh, Chadol</creator><creator>Yoon, Hyojin</creator><creator>Jo, Ji Young</creator><creator>Son, Junwoo</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5363-1987</orcidid></search><sort><creationdate>20180926</creationdate><title>Gate‐Induced Massive and Reversible Phase Transition of VO2 Channels Using Solid‐State Proton Electrolytes</title><author>Jo, Minguk ; Lee, Hyeon Jun ; Oh, Chadol ; Yoon, Hyojin ; Jo, Ji Young ; Son, Junwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3383-6439750497a2998e917f4beb78720e9ec511b3a1b69fcd60049b9635d0a57ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bias</topic><topic>Carrier density</topic><topic>chemical expansion</topic><topic>Conductors</topic><topic>Correlation</topic><topic>Electron states</topic><topic>Electronic devices</topic><topic>High voltages</topic><topic>ionotronics</topic><topic>Lattice parameters</topic><topic>Low voltage</topic><topic>Materials science</topic><topic>metal–insulator transition</topic><topic>Modulation</topic><topic>Molten salt electrolytes</topic><topic>Organic chemistry</topic><topic>Phase transitions</topic><topic>proton gating</topic><topic>Resistance</topic><topic>Silicon dioxide</topic><topic>Solid electrolytes</topic><topic>vanadium dioxide</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Minguk</creatorcontrib><creatorcontrib>Lee, Hyeon Jun</creatorcontrib><creatorcontrib>Oh, Chadol</creatorcontrib><creatorcontrib>Yoon, Hyojin</creatorcontrib><creatorcontrib>Jo, Ji Young</creatorcontrib><creatorcontrib>Son, Junwoo</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Minguk</au><au>Lee, Hyeon Jun</au><au>Oh, Chadol</au><au>Yoon, Hyojin</au><au>Jo, Ji Young</au><au>Son, Junwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate‐Induced Massive and Reversible Phase Transition of VO2 Channels Using Solid‐State Proton Electrolytes</atitle><jtitle>Advanced functional materials</jtitle><date>2018-09-26</date><risdate>2018</risdate><volume>28</volume><issue>39</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The use of gate bias to control electronic phases in VO2, an archetypical correlated oxide, offers a powerful method to probe their underlying physics, as well as for the potential to develop novel electronic devices. Up to date, purely electrostatic gating in 3‐terminal devices with correlated channel shows the limited electrostatic gating efficiency due to insufficiently induced carrier density and short electrostatic screening length. Here massive and reversible conductance modulation is shown in a VO2 channel by applying gate bias VG at low voltage by a solid‐state proton (H+) conductor. By using porous silica to modulate H+ concentration in VO2, gate‐induced reversible insulator‐to‐metal (I‐to‐M) phase transition at low voltage, and unprecedented two‐step insulator‐to‐metal‐to‐insulator (I‐to‐M‐to‐I) phase transition at high voltage are shown. VG strongly and efficiently injects H+ into the VO2 channel without creating oxygen deficiencies; this H+‐induced electronic phase transition occurs by giant modulation (≈7%) of out‐of‐plane lattice parameters as a result of H+‐induced chemical expansion. The results clarify the role of H+ on the electronic state of the correlated phases, and demonstrate the potentials for electronic devices that use ionic/electronic coupling. Gate‐induced massive and reversible phase transition is demonstrated in VO2 channels using solid‐state proton electrolytes. Applying gate bias effectively injects large numbers of H+ ions without creating oxygen deficiencies and causes a two‐step insulator‐to‐metal‐to‐insulator phase transition and a hydrogen‐defect‐induced chemical expansion at room temperature. This observation presents an opportunity to develop new types of three‐terminal electronic devices.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201802003</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5363-1987</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-09, Vol.28 (39), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2111120277
source Access via Wiley Online Library
subjects Bias
Carrier density
chemical expansion
Conductors
Correlation
Electron states
Electronic devices
High voltages
ionotronics
Lattice parameters
Low voltage
Materials science
metal–insulator transition
Modulation
Molten salt electrolytes
Organic chemistry
Phase transitions
proton gating
Resistance
Silicon dioxide
Solid electrolytes
vanadium dioxide
Vanadium oxides
title Gate‐Induced Massive and Reversible Phase Transition of VO2 Channels Using Solid‐State Proton Electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate%E2%80%90Induced%20Massive%20and%20Reversible%20Phase%20Transition%20of%20VO2%20Channels%20Using%20Solid%E2%80%90State%20Proton%20Electrolytes&rft.jtitle=Advanced%20functional%20materials&rft.au=Jo,%20Minguk&rft.date=2018-09-26&rft.volume=28&rft.issue=39&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201802003&rft_dat=%3Cproquest_wiley%3E2111120277%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111120277&rft_id=info:pmid/&rfr_iscdi=true