Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids
In this paper, we develop a fully implicit scheme on staggered grids to solve the Maxwell's equations when Drude metamaterial is involved. Unconditional stability and optimal error estimate of the scheme are proved. Numerical results are provided to support the theoretical analysis, and used to...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2018-11, Vol.34 (6), p.2040-2059 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2059 |
---|---|
container_issue | 6 |
container_start_page | 2040 |
container_title | Numerical methods for partial differential equations |
container_volume | 34 |
creator | Wang, Xiang Li, Jichun Fang, Zhiwei |
description | In this paper, we develop a fully implicit scheme on staggered grids to solve the Maxwell's equations when Drude metamaterial is involved. Unconditional stability and optimal error estimate of the scheme are proved. Numerical results are provided to support the theoretical analysis, and used to demonstrate the applicability of the scheme to simulate the complicated backward wave propagation phenomenon occurring in metamaterials. |
doi_str_mv | 10.1002/num.22275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111111126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111111126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3635-4a6120a140a097a00c7bd3bcf601b192078946a73e2a9117f7f183080941458c3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8ssUAsAjPOw_ESladUYEMldtE0dUrAsYudAN3xCXwjX0IgbBnpajbnjjSHsX2EYwQQJ7ZrjoUQMt1gIwSVRyIR2SYbgUxUhKl62GY7ITwBIKaoRuz9TL9q41aNti0nu-hDZh3qwF3FJ57s89fH521dOhOc5aF81I3mlfO80S011Gpfk-E39P6mjTkMXL901NbO9n3LrbOdrXu64V6XLdllZ8jzpa8XYZdtVWSC3vvbYza7OL-fXEXTu8vryek0KuMsTqOEMhRAmACBkgRQyvkinpdVBjhHJUDmKslIxlqQQpSVrDCPIQeVYJLmZTxmB8PdlXcvnQ5t8eQ63z8ZCoHDiKynjgaq9C4Er6ti5euG_LpAKH7EFr3Y4ldsz54M7Ftt9Pp_sLid3QyNbyMce-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111111126</pqid></control><display><type>article</type><title>Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Xiang ; Li, Jichun ; Fang, Zhiwei</creator><creatorcontrib>Wang, Xiang ; Li, Jichun ; Fang, Zhiwei</creatorcontrib><description>In this paper, we develop a fully implicit scheme on staggered grids to solve the Maxwell's equations when Drude metamaterial is involved. Unconditional stability and optimal error estimate of the scheme are proved. Numerical results are provided to support the theoretical analysis, and used to demonstrate the applicability of the scheme to simulate the complicated backward wave propagation phenomenon occurring in metamaterials.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22275</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>backward wave propagation ; Backward waves ; Computer simulation ; Crank-Nicholson method ; finite‐difference time‐domain method ; Mathematical analysis ; Maxwell's equations ; metamaterial ; Metamaterials ; nonuniform rectangular mesh ; Wave propagation</subject><ispartof>Numerical methods for partial differential equations, 2018-11, Vol.34 (6), p.2040-2059</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3635-4a6120a140a097a00c7bd3bcf601b192078946a73e2a9117f7f183080941458c3</citedby><cites>FETCH-LOGICAL-c3635-4a6120a140a097a00c7bd3bcf601b192078946a73e2a9117f7f183080941458c3</cites><orcidid>0000-0002-8338-8412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22275$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22275$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Li, Jichun</creatorcontrib><creatorcontrib>Fang, Zhiwei</creatorcontrib><title>Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids</title><title>Numerical methods for partial differential equations</title><description>In this paper, we develop a fully implicit scheme on staggered grids to solve the Maxwell's equations when Drude metamaterial is involved. Unconditional stability and optimal error estimate of the scheme are proved. Numerical results are provided to support the theoretical analysis, and used to demonstrate the applicability of the scheme to simulate the complicated backward wave propagation phenomenon occurring in metamaterials.</description><subject>backward wave propagation</subject><subject>Backward waves</subject><subject>Computer simulation</subject><subject>Crank-Nicholson method</subject><subject>finite‐difference time‐domain method</subject><subject>Mathematical analysis</subject><subject>Maxwell's equations</subject><subject>metamaterial</subject><subject>Metamaterials</subject><subject>nonuniform rectangular mesh</subject><subject>Wave propagation</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8ssUAsAjPOw_ESladUYEMldtE0dUrAsYudAN3xCXwjX0IgbBnpajbnjjSHsX2EYwQQJ7ZrjoUQMt1gIwSVRyIR2SYbgUxUhKl62GY7ITwBIKaoRuz9TL9q41aNti0nu-hDZh3qwF3FJ57s89fH521dOhOc5aF81I3mlfO80S011Gpfk-E39P6mjTkMXL901NbO9n3LrbOdrXu64V6XLdllZ8jzpa8XYZdtVWSC3vvbYza7OL-fXEXTu8vryek0KuMsTqOEMhRAmACBkgRQyvkinpdVBjhHJUDmKslIxlqQQpSVrDCPIQeVYJLmZTxmB8PdlXcvnQ5t8eQ63z8ZCoHDiKynjgaq9C4Er6ti5euG_LpAKH7EFr3Y4ldsz54M7Ftt9Pp_sLid3QyNbyMce-w</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Wang, Xiang</creator><creator>Li, Jichun</creator><creator>Fang, Zhiwei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8338-8412</orcidid></search><sort><creationdate>201811</creationdate><title>Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids</title><author>Wang, Xiang ; Li, Jichun ; Fang, Zhiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3635-4a6120a140a097a00c7bd3bcf601b192078946a73e2a9117f7f183080941458c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>backward wave propagation</topic><topic>Backward waves</topic><topic>Computer simulation</topic><topic>Crank-Nicholson method</topic><topic>finite‐difference time‐domain method</topic><topic>Mathematical analysis</topic><topic>Maxwell's equations</topic><topic>metamaterial</topic><topic>Metamaterials</topic><topic>nonuniform rectangular mesh</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Li, Jichun</creatorcontrib><creatorcontrib>Fang, Zhiwei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiang</au><au>Li, Jichun</au><au>Fang, Zhiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2018-11</date><risdate>2018</risdate><volume>34</volume><issue>6</issue><spage>2040</spage><epage>2059</epage><pages>2040-2059</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>In this paper, we develop a fully implicit scheme on staggered grids to solve the Maxwell's equations when Drude metamaterial is involved. Unconditional stability and optimal error estimate of the scheme are proved. Numerical results are provided to support the theoretical analysis, and used to demonstrate the applicability of the scheme to simulate the complicated backward wave propagation phenomenon occurring in metamaterials.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/num.22275</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8338-8412</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2018-11, Vol.34 (6), p.2040-2059 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_journals_2111111126 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | backward wave propagation Backward waves Computer simulation Crank-Nicholson method finite‐difference time‐domain method Mathematical analysis Maxwell's equations metamaterial Metamaterials nonuniform rectangular mesh Wave propagation |
title | Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20analysis%20of%20Crank%E2%80%90Nicolson%20scheme%20for%20metamaterial%20Maxwell's%20equations%20on%20nonuniform%20rectangular%20grids&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Wang,%20Xiang&rft.date=2018-11&rft.volume=34&rft.issue=6&rft.spage=2040&rft.epage=2059&rft.pages=2040-2059&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22275&rft_dat=%3Cproquest_cross%3E2111111126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111111126&rft_id=info:pmid/&rfr_iscdi=true |