Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids

In this paper, we develop a fully implicit scheme on staggered grids to solve the Maxwell's equations when Drude metamaterial is involved. Unconditional stability and optimal error estimate of the scheme are proved. Numerical results are provided to support the theoretical analysis, and used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2018-11, Vol.34 (6), p.2040-2059
Hauptverfasser: Wang, Xiang, Li, Jichun, Fang, Zhiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2059
container_issue 6
container_start_page 2040
container_title Numerical methods for partial differential equations
container_volume 34
creator Wang, Xiang
Li, Jichun
Fang, Zhiwei
description In this paper, we develop a fully implicit scheme on staggered grids to solve the Maxwell's equations when Drude metamaterial is involved. Unconditional stability and optimal error estimate of the scheme are proved. Numerical results are provided to support the theoretical analysis, and used to demonstrate the applicability of the scheme to simulate the complicated backward wave propagation phenomenon occurring in metamaterials.
doi_str_mv 10.1002/num.22275
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111111126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111111126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3635-4a6120a140a097a00c7bd3bcf601b192078946a73e2a9117f7f183080941458c3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8ssUAsAjPOw_ESladUYEMldtE0dUrAsYudAN3xCXwjX0IgbBnpajbnjjSHsX2EYwQQJ7ZrjoUQMt1gIwSVRyIR2SYbgUxUhKl62GY7ITwBIKaoRuz9TL9q41aNti0nu-hDZh3qwF3FJ57s89fH521dOhOc5aF81I3mlfO80S011Gpfk-E39P6mjTkMXL901NbO9n3LrbOdrXu64V6XLdllZ8jzpa8XYZdtVWSC3vvbYza7OL-fXEXTu8vryek0KuMsTqOEMhRAmACBkgRQyvkinpdVBjhHJUDmKslIxlqQQpSVrDCPIQeVYJLmZTxmB8PdlXcvnQ5t8eQ63z8ZCoHDiKynjgaq9C4Er6ti5euG_LpAKH7EFr3Y4ldsz54M7Ftt9Pp_sLid3QyNbyMce-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111111126</pqid></control><display><type>article</type><title>Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Xiang ; Li, Jichun ; Fang, Zhiwei</creator><creatorcontrib>Wang, Xiang ; Li, Jichun ; Fang, Zhiwei</creatorcontrib><description>In this paper, we develop a fully implicit scheme on staggered grids to solve the Maxwell's equations when Drude metamaterial is involved. Unconditional stability and optimal error estimate of the scheme are proved. Numerical results are provided to support the theoretical analysis, and used to demonstrate the applicability of the scheme to simulate the complicated backward wave propagation phenomenon occurring in metamaterials.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22275</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>backward wave propagation ; Backward waves ; Computer simulation ; Crank-Nicholson method ; finite‐difference time‐domain method ; Mathematical analysis ; Maxwell's equations ; metamaterial ; Metamaterials ; nonuniform rectangular mesh ; Wave propagation</subject><ispartof>Numerical methods for partial differential equations, 2018-11, Vol.34 (6), p.2040-2059</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3635-4a6120a140a097a00c7bd3bcf601b192078946a73e2a9117f7f183080941458c3</citedby><cites>FETCH-LOGICAL-c3635-4a6120a140a097a00c7bd3bcf601b192078946a73e2a9117f7f183080941458c3</cites><orcidid>0000-0002-8338-8412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22275$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22275$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Li, Jichun</creatorcontrib><creatorcontrib>Fang, Zhiwei</creatorcontrib><title>Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids</title><title>Numerical methods for partial differential equations</title><description>In this paper, we develop a fully implicit scheme on staggered grids to solve the Maxwell's equations when Drude metamaterial is involved. Unconditional stability and optimal error estimate of the scheme are proved. Numerical results are provided to support the theoretical analysis, and used to demonstrate the applicability of the scheme to simulate the complicated backward wave propagation phenomenon occurring in metamaterials.</description><subject>backward wave propagation</subject><subject>Backward waves</subject><subject>Computer simulation</subject><subject>Crank-Nicholson method</subject><subject>finite‐difference time‐domain method</subject><subject>Mathematical analysis</subject><subject>Maxwell's equations</subject><subject>metamaterial</subject><subject>Metamaterials</subject><subject>nonuniform rectangular mesh</subject><subject>Wave propagation</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8ssUAsAjPOw_ESladUYEMldtE0dUrAsYudAN3xCXwjX0IgbBnpajbnjjSHsX2EYwQQJ7ZrjoUQMt1gIwSVRyIR2SYbgUxUhKl62GY7ITwBIKaoRuz9TL9q41aNti0nu-hDZh3qwF3FJ57s89fH521dOhOc5aF81I3mlfO80S011Gpfk-E39P6mjTkMXL901NbO9n3LrbOdrXu64V6XLdllZ8jzpa8XYZdtVWSC3vvbYza7OL-fXEXTu8vryek0KuMsTqOEMhRAmACBkgRQyvkinpdVBjhHJUDmKslIxlqQQpSVrDCPIQeVYJLmZTxmB8PdlXcvnQ5t8eQ63z8ZCoHDiKynjgaq9C4Er6ti5euG_LpAKH7EFr3Y4ldsz54M7Ftt9Pp_sLid3QyNbyMce-w</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Wang, Xiang</creator><creator>Li, Jichun</creator><creator>Fang, Zhiwei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8338-8412</orcidid></search><sort><creationdate>201811</creationdate><title>Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids</title><author>Wang, Xiang ; Li, Jichun ; Fang, Zhiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3635-4a6120a140a097a00c7bd3bcf601b192078946a73e2a9117f7f183080941458c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>backward wave propagation</topic><topic>Backward waves</topic><topic>Computer simulation</topic><topic>Crank-Nicholson method</topic><topic>finite‐difference time‐domain method</topic><topic>Mathematical analysis</topic><topic>Maxwell's equations</topic><topic>metamaterial</topic><topic>Metamaterials</topic><topic>nonuniform rectangular mesh</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Li, Jichun</creatorcontrib><creatorcontrib>Fang, Zhiwei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiang</au><au>Li, Jichun</au><au>Fang, Zhiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2018-11</date><risdate>2018</risdate><volume>34</volume><issue>6</issue><spage>2040</spage><epage>2059</epage><pages>2040-2059</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>In this paper, we develop a fully implicit scheme on staggered grids to solve the Maxwell's equations when Drude metamaterial is involved. Unconditional stability and optimal error estimate of the scheme are proved. Numerical results are provided to support the theoretical analysis, and used to demonstrate the applicability of the scheme to simulate the complicated backward wave propagation phenomenon occurring in metamaterials.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/num.22275</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8338-8412</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2018-11, Vol.34 (6), p.2040-2059
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2111111126
source Wiley Online Library Journals Frontfile Complete
subjects backward wave propagation
Backward waves
Computer simulation
Crank-Nicholson method
finite‐difference time‐domain method
Mathematical analysis
Maxwell's equations
metamaterial
Metamaterials
nonuniform rectangular mesh
Wave propagation
title Development and analysis of Crank‐Nicolson scheme for metamaterial Maxwell's equations on nonuniform rectangular grids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20analysis%20of%20Crank%E2%80%90Nicolson%20scheme%20for%20metamaterial%20Maxwell's%20equations%20on%20nonuniform%20rectangular%20grids&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Wang,%20Xiang&rft.date=2018-11&rft.volume=34&rft.issue=6&rft.spage=2040&rft.epage=2059&rft.pages=2040-2059&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22275&rft_dat=%3Cproquest_cross%3E2111111126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111111126&rft_id=info:pmid/&rfr_iscdi=true