Molecular diffusion and mobility characterization in ionomer/catalyst dispersions using nuclear magnetic resonance spectroscopy-imaging combined technique

Electrochemical reactions of polymer electrolyte fuel cells occur in catalyst layers, and microscale structure of the catalyst layer is essential for the efficient transport of gas, electron, and proton. Catalyst inks as the dispersion of catalyst/carbon particles and ionomers are used to fabricate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloid and polymer science 2018-11, Vol.296 (11), p.1817-1825
Hauptverfasser: Kameya, Yuki, Iriguchi, Norio, Yoshida, Toshihiko, Sasabe, Takashi, Hirai, Shuichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1825
container_issue 11
container_start_page 1817
container_title Colloid and polymer science
container_volume 296
creator Kameya, Yuki
Iriguchi, Norio
Yoshida, Toshihiko
Sasabe, Takashi
Hirai, Shuichiro
description Electrochemical reactions of polymer electrolyte fuel cells occur in catalyst layers, and microscale structure of the catalyst layer is essential for the efficient transport of gas, electron, and proton. Catalyst inks as the dispersion of catalyst/carbon particles and ionomers are used to fabricate catalyst layers, and the preparation process of catalyst inks have an impact on their characteristics and eventually affects the structures of catalyst layers. Herein, we investigated the potential of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) as tools to characterize catalyst inks. We developed an NMR-MRI combined technique to determine the self-diffusion coefficient of solvent molecules at a local region of samples selected from an MRI image. In addition, we used 19 F NMR spectroscopy to examine the mobility of main and side chains of the ionomer in various compositions of water– n -propanol mixture solvent. It was found that the ionomer side-chain mobility increased by adding n -propanol to water. Furthermore, we showed that MRI was useful to observe the inhomogeneous particle concentration in the catalyst ink, which was not accessible via optical methods. The characterization techniques presented here are expected to promote fundamental understandings for preparing catalyst inks. Graphical abstract ᅟ
doi_str_mv 10.1007/s00396-018-4400-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2110743983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2110743983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-454e2324ca9064bff75bfd26625c98faa0fa328af659efa9479257cbecfd92e03</originalsourceid><addsrcrecordid>eNp1kctqHDEQRUVwwGM7H-CdIGvZpUd3j5bBOE7AIZsEvBNqdWks0yONJfVi8in-2qgZQ1YBQS10zq2CS8g1hxsOMNwWAKl7BnzLlAJg_APZcCU7xjvZn5ENSJBMgXg6JxelvACA0n2_IW8_0oxumW2mU_B-KSFFauNE92kMc6hH6p5ttq5iDn9sXX9DeymmPeZbZ6udj6U2txwwr3KhLSPuaFzcjC11b3cRa3A0Y0nRRoe0oa7mVFw6HFlowMq7tB9DxIlWdM8xvC54RT56Oxf89D4vye-v97_uvrHHnw_f7748Mic7WZnqFAoplLMaejV6P3Sjn0Tfi87prbcWvJVia33fafRWq0GLbnAjOj9pgSAvyedT7iGntrZU85KWHNtKIziHQUm9lY3iJ8q1y0tGbw653Z6PhoNZKzCnCkyrwKwVGN4ccXJKY-MO87_k_0t_AXB3jxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110743983</pqid></control><display><type>article</type><title>Molecular diffusion and mobility characterization in ionomer/catalyst dispersions using nuclear magnetic resonance spectroscopy-imaging combined technique</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kameya, Yuki ; Iriguchi, Norio ; Yoshida, Toshihiko ; Sasabe, Takashi ; Hirai, Shuichiro</creator><creatorcontrib>Kameya, Yuki ; Iriguchi, Norio ; Yoshida, Toshihiko ; Sasabe, Takashi ; Hirai, Shuichiro</creatorcontrib><description>Electrochemical reactions of polymer electrolyte fuel cells occur in catalyst layers, and microscale structure of the catalyst layer is essential for the efficient transport of gas, electron, and proton. Catalyst inks as the dispersion of catalyst/carbon particles and ionomers are used to fabricate catalyst layers, and the preparation process of catalyst inks have an impact on their characteristics and eventually affects the structures of catalyst layers. Herein, we investigated the potential of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) as tools to characterize catalyst inks. We developed an NMR-MRI combined technique to determine the self-diffusion coefficient of solvent molecules at a local region of samples selected from an MRI image. In addition, we used 19 F NMR spectroscopy to examine the mobility of main and side chains of the ionomer in various compositions of water– n -propanol mixture solvent. It was found that the ionomer side-chain mobility increased by adding n -propanol to water. Furthermore, we showed that MRI was useful to observe the inhomogeneous particle concentration in the catalyst ink, which was not accessible via optical methods. The characterization techniques presented here are expected to promote fundamental understandings for preparing catalyst inks. Graphical abstract ᅟ</description><identifier>ISSN: 0303-402X</identifier><identifier>EISSN: 1435-1536</identifier><identifier>DOI: 10.1007/s00396-018-4400-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Catalysis ; Catalysts ; Chain mobility ; Characterization and Evaluation of Materials ; Chemical reactions ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Diffusion coefficient ; Dispersions ; Electrolytic cells ; Food Science ; Inks ; Ionomers ; Magnetic resonance imaging ; Medical imaging ; Molecular diffusion ; Nanotechnology and Microengineering ; NMR ; NMR spectroscopy ; Nuclear fuels ; Nuclear magnetic resonance ; Nuclear reactions ; Optics ; Original Contribution ; Physical Chemistry ; Polymer Sciences ; Proton exchange membrane fuel cells ; Self diffusion ; Soft and Granular Matter ; Solvents ; Spectrum analysis</subject><ispartof>Colloid and polymer science, 2018-11, Vol.296 (11), p.1817-1825</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Colloid and Polymer Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-454e2324ca9064bff75bfd26625c98faa0fa328af659efa9479257cbecfd92e03</citedby><cites>FETCH-LOGICAL-c353t-454e2324ca9064bff75bfd26625c98faa0fa328af659efa9479257cbecfd92e03</cites><orcidid>0000-0002-7811-9971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00396-018-4400-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00396-018-4400-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kameya, Yuki</creatorcontrib><creatorcontrib>Iriguchi, Norio</creatorcontrib><creatorcontrib>Yoshida, Toshihiko</creatorcontrib><creatorcontrib>Sasabe, Takashi</creatorcontrib><creatorcontrib>Hirai, Shuichiro</creatorcontrib><title>Molecular diffusion and mobility characterization in ionomer/catalyst dispersions using nuclear magnetic resonance spectroscopy-imaging combined technique</title><title>Colloid and polymer science</title><addtitle>Colloid Polym Sci</addtitle><description>Electrochemical reactions of polymer electrolyte fuel cells occur in catalyst layers, and microscale structure of the catalyst layer is essential for the efficient transport of gas, electron, and proton. Catalyst inks as the dispersion of catalyst/carbon particles and ionomers are used to fabricate catalyst layers, and the preparation process of catalyst inks have an impact on their characteristics and eventually affects the structures of catalyst layers. Herein, we investigated the potential of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) as tools to characterize catalyst inks. We developed an NMR-MRI combined technique to determine the self-diffusion coefficient of solvent molecules at a local region of samples selected from an MRI image. In addition, we used 19 F NMR spectroscopy to examine the mobility of main and side chains of the ionomer in various compositions of water– n -propanol mixture solvent. It was found that the ionomer side-chain mobility increased by adding n -propanol to water. Furthermore, we showed that MRI was useful to observe the inhomogeneous particle concentration in the catalyst ink, which was not accessible via optical methods. The characterization techniques presented here are expected to promote fundamental understandings for preparing catalyst inks. Graphical abstract ᅟ</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chain mobility</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Diffusion coefficient</subject><subject>Dispersions</subject><subject>Electrolytic cells</subject><subject>Food Science</subject><subject>Inks</subject><subject>Ionomers</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Molecular diffusion</subject><subject>Nanotechnology and Microengineering</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear fuels</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear reactions</subject><subject>Optics</subject><subject>Original Contribution</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Proton exchange membrane fuel cells</subject><subject>Self diffusion</subject><subject>Soft and Granular Matter</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><issn>0303-402X</issn><issn>1435-1536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kctqHDEQRUVwwGM7H-CdIGvZpUd3j5bBOE7AIZsEvBNqdWks0yONJfVi8in-2qgZQ1YBQS10zq2CS8g1hxsOMNwWAKl7BnzLlAJg_APZcCU7xjvZn5ENSJBMgXg6JxelvACA0n2_IW8_0oxumW2mU_B-KSFFauNE92kMc6hH6p5ttq5iDn9sXX9DeymmPeZbZ6udj6U2txwwr3KhLSPuaFzcjC11b3cRa3A0Y0nRRoe0oa7mVFw6HFlowMq7tB9DxIlWdM8xvC54RT56Oxf89D4vye-v97_uvrHHnw_f7748Mic7WZnqFAoplLMaejV6P3Sjn0Tfi87prbcWvJVia33fafRWq0GLbnAjOj9pgSAvyedT7iGntrZU85KWHNtKIziHQUm9lY3iJ8q1y0tGbw653Z6PhoNZKzCnCkyrwKwVGN4ccXJKY-MO87_k_0t_AXB3jxw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Kameya, Yuki</creator><creator>Iriguchi, Norio</creator><creator>Yoshida, Toshihiko</creator><creator>Sasabe, Takashi</creator><creator>Hirai, Shuichiro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7811-9971</orcidid></search><sort><creationdate>20181101</creationdate><title>Molecular diffusion and mobility characterization in ionomer/catalyst dispersions using nuclear magnetic resonance spectroscopy-imaging combined technique</title><author>Kameya, Yuki ; Iriguchi, Norio ; Yoshida, Toshihiko ; Sasabe, Takashi ; Hirai, Shuichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-454e2324ca9064bff75bfd26625c98faa0fa328af659efa9479257cbecfd92e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chain mobility</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Diffusion coefficient</topic><topic>Dispersions</topic><topic>Electrolytic cells</topic><topic>Food Science</topic><topic>Inks</topic><topic>Ionomers</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Molecular diffusion</topic><topic>Nanotechnology and Microengineering</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear fuels</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear reactions</topic><topic>Optics</topic><topic>Original Contribution</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Proton exchange membrane fuel cells</topic><topic>Self diffusion</topic><topic>Soft and Granular Matter</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kameya, Yuki</creatorcontrib><creatorcontrib>Iriguchi, Norio</creatorcontrib><creatorcontrib>Yoshida, Toshihiko</creatorcontrib><creatorcontrib>Sasabe, Takashi</creatorcontrib><creatorcontrib>Hirai, Shuichiro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Colloid and polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kameya, Yuki</au><au>Iriguchi, Norio</au><au>Yoshida, Toshihiko</au><au>Sasabe, Takashi</au><au>Hirai, Shuichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular diffusion and mobility characterization in ionomer/catalyst dispersions using nuclear magnetic resonance spectroscopy-imaging combined technique</atitle><jtitle>Colloid and polymer science</jtitle><stitle>Colloid Polym Sci</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>296</volume><issue>11</issue><spage>1817</spage><epage>1825</epage><pages>1817-1825</pages><issn>0303-402X</issn><eissn>1435-1536</eissn><abstract>Electrochemical reactions of polymer electrolyte fuel cells occur in catalyst layers, and microscale structure of the catalyst layer is essential for the efficient transport of gas, electron, and proton. Catalyst inks as the dispersion of catalyst/carbon particles and ionomers are used to fabricate catalyst layers, and the preparation process of catalyst inks have an impact on their characteristics and eventually affects the structures of catalyst layers. Herein, we investigated the potential of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) as tools to characterize catalyst inks. We developed an NMR-MRI combined technique to determine the self-diffusion coefficient of solvent molecules at a local region of samples selected from an MRI image. In addition, we used 19 F NMR spectroscopy to examine the mobility of main and side chains of the ionomer in various compositions of water– n -propanol mixture solvent. It was found that the ionomer side-chain mobility increased by adding n -propanol to water. Furthermore, we showed that MRI was useful to observe the inhomogeneous particle concentration in the catalyst ink, which was not accessible via optical methods. The characterization techniques presented here are expected to promote fundamental understandings for preparing catalyst inks. Graphical abstract ᅟ</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00396-018-4400-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7811-9971</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0303-402X
ispartof Colloid and polymer science, 2018-11, Vol.296 (11), p.1817-1825
issn 0303-402X
1435-1536
language eng
recordid cdi_proquest_journals_2110743983
source SpringerLink Journals - AutoHoldings
subjects Catalysis
Catalysts
Chain mobility
Characterization and Evaluation of Materials
Chemical reactions
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Diffusion coefficient
Dispersions
Electrolytic cells
Food Science
Inks
Ionomers
Magnetic resonance imaging
Medical imaging
Molecular diffusion
Nanotechnology and Microengineering
NMR
NMR spectroscopy
Nuclear fuels
Nuclear magnetic resonance
Nuclear reactions
Optics
Original Contribution
Physical Chemistry
Polymer Sciences
Proton exchange membrane fuel cells
Self diffusion
Soft and Granular Matter
Solvents
Spectrum analysis
title Molecular diffusion and mobility characterization in ionomer/catalyst dispersions using nuclear magnetic resonance spectroscopy-imaging combined technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20diffusion%20and%20mobility%20characterization%20in%20ionomer/catalyst%20dispersions%20using%20nuclear%20magnetic%20resonance%20spectroscopy-imaging%20combined%20technique&rft.jtitle=Colloid%20and%20polymer%20science&rft.au=Kameya,%20Yuki&rft.date=2018-11-01&rft.volume=296&rft.issue=11&rft.spage=1817&rft.epage=1825&rft.pages=1817-1825&rft.issn=0303-402X&rft.eissn=1435-1536&rft_id=info:doi/10.1007/s00396-018-4400-1&rft_dat=%3Cproquest_cross%3E2110743983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110743983&rft_id=info:pmid/&rfr_iscdi=true