Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation

Engineering the band gap of semiconductors is often crucial in the quest for developing new and advanced technologies. In this report, the implication of graphene on the band gap optimization of tungsten trioxide (WO 3 ) is discussed. Simple one-step sol–gel process was followed to anchor WO 3 nanop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2018, Vol.124 (10), p.1-6
Hauptverfasser: Baishya, Kaushik, Ray, Joydwip S., Dutta, Pankaj, Das, Partha P., Das, Shyamal K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 10
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 124
creator Baishya, Kaushik
Ray, Joydwip S.
Dutta, Pankaj
Das, Partha P.
Das, Shyamal K.
description Engineering the band gap of semiconductors is often crucial in the quest for developing new and advanced technologies. In this report, the implication of graphene on the band gap optimization of tungsten trioxide (WO 3 ) is discussed. Simple one-step sol–gel process was followed to anchor WO 3 nanoparticles in graphene. Graphene induces a redshift in the band gap of WO 3 . Band gap narrowing of 6.60% is observed for 7 wt% graphene-tethered WO 3 . Interestingly, a profound difference is observed in estimating the band gap energy values following the usual Tauc equation. Our observation suggests that the differential form of Tauc equation is better suited to determine the band gap energy of inorganic semiconductors than the typical extrapolation method.
doi_str_mv 10.1007/s00339-018-2097-0
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2110261158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2110261158</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-495cc03f0e0edc56ec87daf62b94a05f64672314ffc65adc7d8aeb3fb4d0a0543</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouK7-AG8Bz9HJR9P2KIuuwsJeVjyWNJmsXWvSTVt_vy0r6FwGZh7eYR5Cbjncc4D8oQeQsmTACyagzBmckQVXUjDQEs7JAkqVs0KW-pJc9f0BplJCLEi3Tqb7wIDsC11jBnS0NsHRvekohn0TEFMT9jR6-r6VNJgQO5OGxrZIZ87QhG2Mn9QMdGdGS_E4mqGJgfqY_kV9m_Y0vyYX3rQ93vz2JXl7ftqtXthmu35dPW5YxzM9MFVm1oL0gIDOZhptkTvjtahLZSDzWulcSK68tzozzuauMFhLXysH017JJbk75XYpHkfsh-oQxxSmk5XgHITmPCsmSpyovpvfxPRHcahms9XJbDWZrWazFcgfFEhs3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110261158</pqid></control><display><type>article</type><title>Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation</title><source>Springer Nature - Complete Springer Journals</source><creator>Baishya, Kaushik ; Ray, Joydwip S. ; Dutta, Pankaj ; Das, Partha P. ; Das, Shyamal K.</creator><creatorcontrib>Baishya, Kaushik ; Ray, Joydwip S. ; Dutta, Pankaj ; Das, Partha P. ; Das, Shyamal K.</creatorcontrib><description>Engineering the band gap of semiconductors is often crucial in the quest for developing new and advanced technologies. In this report, the implication of graphene on the band gap optimization of tungsten trioxide (WO 3 ) is discussed. Simple one-step sol–gel process was followed to anchor WO 3 nanoparticles in graphene. Graphene induces a redshift in the band gap of WO 3 . Band gap narrowing of 6.60% is observed for 7 wt% graphene-tethered WO 3 . Interestingly, a profound difference is observed in estimating the band gap energy values following the usual Tauc equation. Our observation suggests that the differential form of Tauc equation is better suited to determine the band gap energy of inorganic semiconductors than the typical extrapolation method.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-018-2097-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anchors ; Applied physics ; Band gap ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Differential equations ; Energy gap ; Graphene ; Machines ; Manufacturing ; Materials science ; Nanoparticles ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Red shift ; Semiconductors ; Sol-gel processes ; Surfaces and Interfaces ; Thin Films ; Tungsten oxides</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2018, Vol.124 (10), p.1-6</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0229-3236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-018-2097-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-018-2097-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Baishya, Kaushik</creatorcontrib><creatorcontrib>Ray, Joydwip S.</creatorcontrib><creatorcontrib>Dutta, Pankaj</creatorcontrib><creatorcontrib>Das, Partha P.</creatorcontrib><creatorcontrib>Das, Shyamal K.</creatorcontrib><title>Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Engineering the band gap of semiconductors is often crucial in the quest for developing new and advanced technologies. In this report, the implication of graphene on the band gap optimization of tungsten trioxide (WO 3 ) is discussed. Simple one-step sol–gel process was followed to anchor WO 3 nanoparticles in graphene. Graphene induces a redshift in the band gap of WO 3 . Band gap narrowing of 6.60% is observed for 7 wt% graphene-tethered WO 3 . Interestingly, a profound difference is observed in estimating the band gap energy values following the usual Tauc equation. Our observation suggests that the differential form of Tauc equation is better suited to determine the band gap energy of inorganic semiconductors than the typical extrapolation method.</description><subject>Anchors</subject><subject>Applied physics</subject><subject>Band gap</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Differential equations</subject><subject>Energy gap</subject><subject>Graphene</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Red shift</subject><subject>Semiconductors</subject><subject>Sol-gel processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tungsten oxides</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkE1LxDAQhoMouK7-AG8Bz9HJR9P2KIuuwsJeVjyWNJmsXWvSTVt_vy0r6FwGZh7eYR5Cbjncc4D8oQeQsmTACyagzBmckQVXUjDQEs7JAkqVs0KW-pJc9f0BplJCLEi3Tqb7wIDsC11jBnS0NsHRvekohn0TEFMT9jR6-r6VNJgQO5OGxrZIZ87QhG2Mn9QMdGdGS_E4mqGJgfqY_kV9m_Y0vyYX3rQ93vz2JXl7ftqtXthmu35dPW5YxzM9MFVm1oL0gIDOZhptkTvjtahLZSDzWulcSK68tzozzuauMFhLXysH017JJbk75XYpHkfsh-oQxxSmk5XgHITmPCsmSpyovpvfxPRHcahms9XJbDWZrWazFcgfFEhs3Q</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Baishya, Kaushik</creator><creator>Ray, Joydwip S.</creator><creator>Dutta, Pankaj</creator><creator>Das, Partha P.</creator><creator>Das, Shyamal K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-0229-3236</orcidid></search><sort><creationdate>2018</creationdate><title>Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation</title><author>Baishya, Kaushik ; Ray, Joydwip S. ; Dutta, Pankaj ; Das, Partha P. ; Das, Shyamal K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-495cc03f0e0edc56ec87daf62b94a05f64672314ffc65adc7d8aeb3fb4d0a0543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anchors</topic><topic>Applied physics</topic><topic>Band gap</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Differential equations</topic><topic>Energy gap</topic><topic>Graphene</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Red shift</topic><topic>Semiconductors</topic><topic>Sol-gel processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tungsten oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baishya, Kaushik</creatorcontrib><creatorcontrib>Ray, Joydwip S.</creatorcontrib><creatorcontrib>Dutta, Pankaj</creatorcontrib><creatorcontrib>Das, Partha P.</creatorcontrib><creatorcontrib>Das, Shyamal K.</creatorcontrib><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baishya, Kaushik</au><au>Ray, Joydwip S.</au><au>Dutta, Pankaj</au><au>Das, Partha P.</au><au>Das, Shyamal K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2018</date><risdate>2018</risdate><volume>124</volume><issue>10</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Engineering the band gap of semiconductors is often crucial in the quest for developing new and advanced technologies. In this report, the implication of graphene on the band gap optimization of tungsten trioxide (WO 3 ) is discussed. Simple one-step sol–gel process was followed to anchor WO 3 nanoparticles in graphene. Graphene induces a redshift in the band gap of WO 3 . Band gap narrowing of 6.60% is observed for 7 wt% graphene-tethered WO 3 . Interestingly, a profound difference is observed in estimating the band gap energy values following the usual Tauc equation. Our observation suggests that the differential form of Tauc equation is better suited to determine the band gap energy of inorganic semiconductors than the typical extrapolation method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-018-2097-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0229-3236</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2018, Vol.124 (10), p.1-6
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2110261158
source Springer Nature - Complete Springer Journals
subjects Anchors
Applied physics
Band gap
Characterization and Evaluation of Materials
Condensed Matter Physics
Differential equations
Energy gap
Graphene
Machines
Manufacturing
Materials science
Nanoparticles
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Red shift
Semiconductors
Sol-gel processes
Surfaces and Interfaces
Thin Films
Tungsten oxides
title Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene-mediated%20band%20gap%20engineering%20of%20WO3%20nanoparticle%20and%20a%20relook%20at%20Tauc%20equation%20for%20band%20gap%20evaluation&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Baishya,%20Kaushik&rft.date=2018&rft.volume=124&rft.issue=10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-018-2097-0&rft_dat=%3Cproquest_sprin%3E2110261158%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110261158&rft_id=info:pmid/&rfr_iscdi=true