Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation
Engineering the band gap of semiconductors is often crucial in the quest for developing new and advanced technologies. In this report, the implication of graphene on the band gap optimization of tungsten trioxide (WO 3 ) is discussed. Simple one-step sol–gel process was followed to anchor WO 3 nanop...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2018, Vol.124 (10), p.1-6 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 124 |
creator | Baishya, Kaushik Ray, Joydwip S. Dutta, Pankaj Das, Partha P. Das, Shyamal K. |
description | Engineering the band gap of semiconductors is often crucial in the quest for developing new and advanced technologies. In this report, the implication of graphene on the band gap optimization of tungsten trioxide (WO
3
) is discussed. Simple one-step sol–gel process was followed to anchor WO
3
nanoparticles in graphene. Graphene induces a redshift in the band gap of WO
3
. Band gap narrowing of 6.60% is observed for 7 wt% graphene-tethered WO
3
. Interestingly, a profound difference is observed in estimating the band gap energy values following the usual Tauc equation. Our observation suggests that the differential form of Tauc equation is better suited to determine the band gap energy of inorganic semiconductors than the typical extrapolation method. |
doi_str_mv | 10.1007/s00339-018-2097-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2110261158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2110261158</sourcerecordid><originalsourceid>FETCH-LOGICAL-p156t-495cc03f0e0edc56ec87daf62b94a05f64672314ffc65adc7d8aeb3fb4d0a0543</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouK7-AG8Bz9HJR9P2KIuuwsJeVjyWNJmsXWvSTVt_vy0r6FwGZh7eYR5Cbjncc4D8oQeQsmTACyagzBmckQVXUjDQEs7JAkqVs0KW-pJc9f0BplJCLEi3Tqb7wIDsC11jBnS0NsHRvekohn0TEFMT9jR6-r6VNJgQO5OGxrZIZ87QhG2Mn9QMdGdGS_E4mqGJgfqY_kV9m_Y0vyYX3rQ93vz2JXl7ftqtXthmu35dPW5YxzM9MFVm1oL0gIDOZhptkTvjtahLZSDzWulcSK68tzozzuauMFhLXysH017JJbk75XYpHkfsh-oQxxSmk5XgHITmPCsmSpyovpvfxPRHcahms9XJbDWZrWazFcgfFEhs3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110261158</pqid></control><display><type>article</type><title>Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation</title><source>Springer Nature - Complete Springer Journals</source><creator>Baishya, Kaushik ; Ray, Joydwip S. ; Dutta, Pankaj ; Das, Partha P. ; Das, Shyamal K.</creator><creatorcontrib>Baishya, Kaushik ; Ray, Joydwip S. ; Dutta, Pankaj ; Das, Partha P. ; Das, Shyamal K.</creatorcontrib><description>Engineering the band gap of semiconductors is often crucial in the quest for developing new and advanced technologies. In this report, the implication of graphene on the band gap optimization of tungsten trioxide (WO
3
) is discussed. Simple one-step sol–gel process was followed to anchor WO
3
nanoparticles in graphene. Graphene induces a redshift in the band gap of WO
3
. Band gap narrowing of 6.60% is observed for 7 wt% graphene-tethered WO
3
. Interestingly, a profound difference is observed in estimating the band gap energy values following the usual Tauc equation. Our observation suggests that the differential form of Tauc equation is better suited to determine the band gap energy of inorganic semiconductors than the typical extrapolation method.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-018-2097-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anchors ; Applied physics ; Band gap ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Differential equations ; Energy gap ; Graphene ; Machines ; Manufacturing ; Materials science ; Nanoparticles ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Red shift ; Semiconductors ; Sol-gel processes ; Surfaces and Interfaces ; Thin Films ; Tungsten oxides</subject><ispartof>Applied physics. A, Materials science & processing, 2018, Vol.124 (10), p.1-6</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0229-3236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-018-2097-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-018-2097-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Baishya, Kaushik</creatorcontrib><creatorcontrib>Ray, Joydwip S.</creatorcontrib><creatorcontrib>Dutta, Pankaj</creatorcontrib><creatorcontrib>Das, Partha P.</creatorcontrib><creatorcontrib>Das, Shyamal K.</creatorcontrib><title>Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Engineering the band gap of semiconductors is often crucial in the quest for developing new and advanced technologies. In this report, the implication of graphene on the band gap optimization of tungsten trioxide (WO
3
) is discussed. Simple one-step sol–gel process was followed to anchor WO
3
nanoparticles in graphene. Graphene induces a redshift in the band gap of WO
3
. Band gap narrowing of 6.60% is observed for 7 wt% graphene-tethered WO
3
. Interestingly, a profound difference is observed in estimating the band gap energy values following the usual Tauc equation. Our observation suggests that the differential form of Tauc equation is better suited to determine the band gap energy of inorganic semiconductors than the typical extrapolation method.</description><subject>Anchors</subject><subject>Applied physics</subject><subject>Band gap</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Differential equations</subject><subject>Energy gap</subject><subject>Graphene</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Red shift</subject><subject>Semiconductors</subject><subject>Sol-gel processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tungsten oxides</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkE1LxDAQhoMouK7-AG8Bz9HJR9P2KIuuwsJeVjyWNJmsXWvSTVt_vy0r6FwGZh7eYR5Cbjncc4D8oQeQsmTACyagzBmckQVXUjDQEs7JAkqVs0KW-pJc9f0BplJCLEi3Tqb7wIDsC11jBnS0NsHRvekohn0TEFMT9jR6-r6VNJgQO5OGxrZIZ87QhG2Mn9QMdGdGS_E4mqGJgfqY_kV9m_Y0vyYX3rQ93vz2JXl7ftqtXthmu35dPW5YxzM9MFVm1oL0gIDOZhptkTvjtahLZSDzWulcSK68tzozzuauMFhLXysH017JJbk75XYpHkfsh-oQxxSmk5XgHITmPCsmSpyovpvfxPRHcahms9XJbDWZrWazFcgfFEhs3Q</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Baishya, Kaushik</creator><creator>Ray, Joydwip S.</creator><creator>Dutta, Pankaj</creator><creator>Das, Partha P.</creator><creator>Das, Shyamal K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-0229-3236</orcidid></search><sort><creationdate>2018</creationdate><title>Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation</title><author>Baishya, Kaushik ; Ray, Joydwip S. ; Dutta, Pankaj ; Das, Partha P. ; Das, Shyamal K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p156t-495cc03f0e0edc56ec87daf62b94a05f64672314ffc65adc7d8aeb3fb4d0a0543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anchors</topic><topic>Applied physics</topic><topic>Band gap</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Differential equations</topic><topic>Energy gap</topic><topic>Graphene</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Red shift</topic><topic>Semiconductors</topic><topic>Sol-gel processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tungsten oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baishya, Kaushik</creatorcontrib><creatorcontrib>Ray, Joydwip S.</creatorcontrib><creatorcontrib>Dutta, Pankaj</creatorcontrib><creatorcontrib>Das, Partha P.</creatorcontrib><creatorcontrib>Das, Shyamal K.</creatorcontrib><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baishya, Kaushik</au><au>Ray, Joydwip S.</au><au>Dutta, Pankaj</au><au>Das, Partha P.</au><au>Das, Shyamal K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2018</date><risdate>2018</risdate><volume>124</volume><issue>10</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Engineering the band gap of semiconductors is often crucial in the quest for developing new and advanced technologies. In this report, the implication of graphene on the band gap optimization of tungsten trioxide (WO
3
) is discussed. Simple one-step sol–gel process was followed to anchor WO
3
nanoparticles in graphene. Graphene induces a redshift in the band gap of WO
3
. Band gap narrowing of 6.60% is observed for 7 wt% graphene-tethered WO
3
. Interestingly, a profound difference is observed in estimating the band gap energy values following the usual Tauc equation. Our observation suggests that the differential form of Tauc equation is better suited to determine the band gap energy of inorganic semiconductors than the typical extrapolation method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-018-2097-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0229-3236</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2018, Vol.124 (10), p.1-6 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2110261158 |
source | Springer Nature - Complete Springer Journals |
subjects | Anchors Applied physics Band gap Characterization and Evaluation of Materials Condensed Matter Physics Differential equations Energy gap Graphene Machines Manufacturing Materials science Nanoparticles Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Processes Red shift Semiconductors Sol-gel processes Surfaces and Interfaces Thin Films Tungsten oxides |
title | Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene-mediated%20band%20gap%20engineering%20of%20WO3%20nanoparticle%20and%20a%20relook%20at%20Tauc%20equation%20for%20band%20gap%20evaluation&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Baishya,%20Kaushik&rft.date=2018&rft.volume=124&rft.issue=10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-018-2097-0&rft_dat=%3Cproquest_sprin%3E2110261158%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110261158&rft_id=info:pmid/&rfr_iscdi=true |