Strength and deformation mechanism of tungsten wires exposed to high temperature annealing: Impact of potassium doping
Recent efforts dedicated to the assessment of mechanical properties of tungsten wires, as means for fiber-reinforced composites, have shown that potassium (K) doping in the as-drawn state does not modify the mechanical properties of the wire. High temperature annealing (Ta up to 2300 °C) leads to th...
Gespeichert in:
Veröffentlicht in: | International journal of refractory metals & hard materials 2018-11, Vol.76, p.226-233 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 233 |
---|---|
container_issue | |
container_start_page | 226 |
container_title | International journal of refractory metals & hard materials |
container_volume | 76 |
creator | Terentyev, D. Riesch, J. Lebediev, S. Khvan, T. Dubinko, A. Bakaeva, A. |
description | Recent efforts dedicated to the assessment of mechanical properties of tungsten wires, as means for fiber-reinforced composites, have shown that potassium (K) doping in the as-drawn state does not modify the mechanical properties of the wire. High temperature annealing (Ta up to 2300 °C) leads to the severe embrittlement of the wire associated with the loss of fracture strength. In this work, we assess the transition behavior of pure and K-doped W wires exposed to the annealing in the temperature range of 1000–2300 °C to identify and recommend temperatures suitable for operation and fabrication of the fiber-reinforced composites. The results of mechanical tests performed in the temperature range of RT-500 °C are reported and substantiated by the electron microscopy analysis. Room temperature tests demonstrate that pure W wires become fully brittle after annealing above 1300 °C, whereas K-doped wires loses ductility above 2100 °C. With raising the test temperature to 300–500 °C, it is found that the strength of pure W wire reduces by a factor of two at Ta = 1000 °C (as compared to non-annealed wire), and goes down to 100 MPa at Ta = 1900 °C. The K-doping suppresses the reduction of the fracture strength at least up to Ta = 1900 °C, thus offering a temperature gap of ~600 °C for the use as reinforcement.
•Effect of high temperature annealing on mechanical properties is studied in tungsten wire.•Potassium doping retains good strength of W wire up to 1900 °C.•Annealing at 1600 °C and above causes complete embrittlement of pure W wire. |
doi_str_mv | 10.1016/j.ijrmhm.2018.07.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2110232169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263436818301380</els_id><sourcerecordid>2110232169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-1215fc30bba79254f3684f8360c27c6bfc77e6b8e5e8d88c1dd4eb221c37463b3</originalsourceid><addsrcrecordid>eNp9kLtu2zAUhokgBeK4eYMOBDpL4UWm5AwFiiBtDBjIkHYmKPLIohCSKkk56duHhjNnOsN_Ofg_hL5RUlNCxe1U2ym60dWM0K4mbU0Iu0Arxiiv-Ja2l2hFmOBVw0V3ha5TmgghYivoCh2fcwR_yCNW3mADQ4hOZRs8dqBH5W1yOAw4L_6QMnj8aiMkDG9zSGBwDni0hxFncDNElZcIpceDerH-cId3blY6n_JzyColuzhswly0r-jLoF4S3HzcNfr76-HP_WO1f_q9u_-5rzTvSK4oo5tBc9L3qt2yTTOUAc3QcUE0a7XoB922IPoONtCZrtPUmAb6slvzthG852v0_dw7x_BvgZTlFJboy0vJKCWMMyq2xdWcXTqGlCIMco7WqfhfUiJPhOUkz4TlibAkrSyES-zHOQZlwdFClElb8BpMgaSzNMF-XvAOQsSIrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110232169</pqid></control><display><type>article</type><title>Strength and deformation mechanism of tungsten wires exposed to high temperature annealing: Impact of potassium doping</title><source>Elsevier ScienceDirect Journals</source><creator>Terentyev, D. ; Riesch, J. ; Lebediev, S. ; Khvan, T. ; Dubinko, A. ; Bakaeva, A.</creator><creatorcontrib>Terentyev, D. ; Riesch, J. ; Lebediev, S. ; Khvan, T. ; Dubinko, A. ; Bakaeva, A.</creatorcontrib><description>Recent efforts dedicated to the assessment of mechanical properties of tungsten wires, as means for fiber-reinforced composites, have shown that potassium (K) doping in the as-drawn state does not modify the mechanical properties of the wire. High temperature annealing (Ta up to 2300 °C) leads to the severe embrittlement of the wire associated with the loss of fracture strength. In this work, we assess the transition behavior of pure and K-doped W wires exposed to the annealing in the temperature range of 1000–2300 °C to identify and recommend temperatures suitable for operation and fabrication of the fiber-reinforced composites. The results of mechanical tests performed in the temperature range of RT-500 °C are reported and substantiated by the electron microscopy analysis. Room temperature tests demonstrate that pure W wires become fully brittle after annealing above 1300 °C, whereas K-doped wires loses ductility above 2100 °C. With raising the test temperature to 300–500 °C, it is found that the strength of pure W wire reduces by a factor of two at Ta = 1000 °C (as compared to non-annealed wire), and goes down to 100 MPa at Ta = 1900 °C. The K-doping suppresses the reduction of the fracture strength at least up to Ta = 1900 °C, thus offering a temperature gap of ~600 °C for the use as reinforcement.
•Effect of high temperature annealing on mechanical properties is studied in tungsten wire.•Potassium doping retains good strength of W wire up to 1900 °C.•Annealing at 1600 °C and above causes complete embrittlement of pure W wire.</description><identifier>ISSN: 0263-4368</identifier><identifier>EISSN: 2213-3917</identifier><identifier>DOI: 10.1016/j.ijrmhm.2018.07.002</identifier><language>eng</language><publisher>Shrewsbury: Elsevier Ltd</publisher><subject>Annealing ; Composites ; Deformation ; Deformation mechanisms ; Doping ; Ductility tests ; Elastoplasticity ; Embrittlement ; Fiber ; Fiber composites ; Fracture strength ; Mechanical properties ; Mechanical tests ; Plasticity ; Potassium ; Potassium doped ; Recrystallization ; Temperature ; Tungsten ; Wire</subject><ispartof>International journal of refractory metals & hard materials, 2018-11, Vol.76, p.226-233</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-1215fc30bba79254f3684f8360c27c6bfc77e6b8e5e8d88c1dd4eb221c37463b3</citedby><cites>FETCH-LOGICAL-c380t-1215fc30bba79254f3684f8360c27c6bfc77e6b8e5e8d88c1dd4eb221c37463b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrmhm.2018.07.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Riesch, J.</creatorcontrib><creatorcontrib>Lebediev, S.</creatorcontrib><creatorcontrib>Khvan, T.</creatorcontrib><creatorcontrib>Dubinko, A.</creatorcontrib><creatorcontrib>Bakaeva, A.</creatorcontrib><title>Strength and deformation mechanism of tungsten wires exposed to high temperature annealing: Impact of potassium doping</title><title>International journal of refractory metals & hard materials</title><description>Recent efforts dedicated to the assessment of mechanical properties of tungsten wires, as means for fiber-reinforced composites, have shown that potassium (K) doping in the as-drawn state does not modify the mechanical properties of the wire. High temperature annealing (Ta up to 2300 °C) leads to the severe embrittlement of the wire associated with the loss of fracture strength. In this work, we assess the transition behavior of pure and K-doped W wires exposed to the annealing in the temperature range of 1000–2300 °C to identify and recommend temperatures suitable for operation and fabrication of the fiber-reinforced composites. The results of mechanical tests performed in the temperature range of RT-500 °C are reported and substantiated by the electron microscopy analysis. Room temperature tests demonstrate that pure W wires become fully brittle after annealing above 1300 °C, whereas K-doped wires loses ductility above 2100 °C. With raising the test temperature to 300–500 °C, it is found that the strength of pure W wire reduces by a factor of two at Ta = 1000 °C (as compared to non-annealed wire), and goes down to 100 MPa at Ta = 1900 °C. The K-doping suppresses the reduction of the fracture strength at least up to Ta = 1900 °C, thus offering a temperature gap of ~600 °C for the use as reinforcement.
•Effect of high temperature annealing on mechanical properties is studied in tungsten wire.•Potassium doping retains good strength of W wire up to 1900 °C.•Annealing at 1600 °C and above causes complete embrittlement of pure W wire.</description><subject>Annealing</subject><subject>Composites</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Doping</subject><subject>Ductility tests</subject><subject>Elastoplasticity</subject><subject>Embrittlement</subject><subject>Fiber</subject><subject>Fiber composites</subject><subject>Fracture strength</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Plasticity</subject><subject>Potassium</subject><subject>Potassium doped</subject><subject>Recrystallization</subject><subject>Temperature</subject><subject>Tungsten</subject><subject>Wire</subject><issn>0263-4368</issn><issn>2213-3917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kLtu2zAUhokgBeK4eYMOBDpL4UWm5AwFiiBtDBjIkHYmKPLIohCSKkk56duHhjNnOsN_Ofg_hL5RUlNCxe1U2ym60dWM0K4mbU0Iu0Arxiiv-Ja2l2hFmOBVw0V3ha5TmgghYivoCh2fcwR_yCNW3mADQ4hOZRs8dqBH5W1yOAw4L_6QMnj8aiMkDG9zSGBwDni0hxFncDNElZcIpceDerH-cId3blY6n_JzyColuzhswly0r-jLoF4S3HzcNfr76-HP_WO1f_q9u_-5rzTvSK4oo5tBc9L3qt2yTTOUAc3QcUE0a7XoB922IPoONtCZrtPUmAb6slvzthG852v0_dw7x_BvgZTlFJboy0vJKCWMMyq2xdWcXTqGlCIMco7WqfhfUiJPhOUkz4TlibAkrSyES-zHOQZlwdFClElb8BpMgaSzNMF-XvAOQsSIrw</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Terentyev, D.</creator><creator>Riesch, J.</creator><creator>Lebediev, S.</creator><creator>Khvan, T.</creator><creator>Dubinko, A.</creator><creator>Bakaeva, A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201811</creationdate><title>Strength and deformation mechanism of tungsten wires exposed to high temperature annealing: Impact of potassium doping</title><author>Terentyev, D. ; Riesch, J. ; Lebediev, S. ; Khvan, T. ; Dubinko, A. ; Bakaeva, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-1215fc30bba79254f3684f8360c27c6bfc77e6b8e5e8d88c1dd4eb221c37463b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annealing</topic><topic>Composites</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Doping</topic><topic>Ductility tests</topic><topic>Elastoplasticity</topic><topic>Embrittlement</topic><topic>Fiber</topic><topic>Fiber composites</topic><topic>Fracture strength</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Plasticity</topic><topic>Potassium</topic><topic>Potassium doped</topic><topic>Recrystallization</topic><topic>Temperature</topic><topic>Tungsten</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Riesch, J.</creatorcontrib><creatorcontrib>Lebediev, S.</creatorcontrib><creatorcontrib>Khvan, T.</creatorcontrib><creatorcontrib>Dubinko, A.</creatorcontrib><creatorcontrib>Bakaeva, A.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of refractory metals & hard materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terentyev, D.</au><au>Riesch, J.</au><au>Lebediev, S.</au><au>Khvan, T.</au><au>Dubinko, A.</au><au>Bakaeva, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strength and deformation mechanism of tungsten wires exposed to high temperature annealing: Impact of potassium doping</atitle><jtitle>International journal of refractory metals & hard materials</jtitle><date>2018-11</date><risdate>2018</risdate><volume>76</volume><spage>226</spage><epage>233</epage><pages>226-233</pages><issn>0263-4368</issn><eissn>2213-3917</eissn><abstract>Recent efforts dedicated to the assessment of mechanical properties of tungsten wires, as means for fiber-reinforced composites, have shown that potassium (K) doping in the as-drawn state does not modify the mechanical properties of the wire. High temperature annealing (Ta up to 2300 °C) leads to the severe embrittlement of the wire associated with the loss of fracture strength. In this work, we assess the transition behavior of pure and K-doped W wires exposed to the annealing in the temperature range of 1000–2300 °C to identify and recommend temperatures suitable for operation and fabrication of the fiber-reinforced composites. The results of mechanical tests performed in the temperature range of RT-500 °C are reported and substantiated by the electron microscopy analysis. Room temperature tests demonstrate that pure W wires become fully brittle after annealing above 1300 °C, whereas K-doped wires loses ductility above 2100 °C. With raising the test temperature to 300–500 °C, it is found that the strength of pure W wire reduces by a factor of two at Ta = 1000 °C (as compared to non-annealed wire), and goes down to 100 MPa at Ta = 1900 °C. The K-doping suppresses the reduction of the fracture strength at least up to Ta = 1900 °C, thus offering a temperature gap of ~600 °C for the use as reinforcement.
•Effect of high temperature annealing on mechanical properties is studied in tungsten wire.•Potassium doping retains good strength of W wire up to 1900 °C.•Annealing at 1600 °C and above causes complete embrittlement of pure W wire.</abstract><cop>Shrewsbury</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmhm.2018.07.002</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-4368 |
ispartof | International journal of refractory metals & hard materials, 2018-11, Vol.76, p.226-233 |
issn | 0263-4368 2213-3917 |
language | eng |
recordid | cdi_proquest_journals_2110232169 |
source | Elsevier ScienceDirect Journals |
subjects | Annealing Composites Deformation Deformation mechanisms Doping Ductility tests Elastoplasticity Embrittlement Fiber Fiber composites Fracture strength Mechanical properties Mechanical tests Plasticity Potassium Potassium doped Recrystallization Temperature Tungsten Wire |
title | Strength and deformation mechanism of tungsten wires exposed to high temperature annealing: Impact of potassium doping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strength%20and%20deformation%20mechanism%20of%20tungsten%20wires%20exposed%20to%20high%20temperature%20annealing:%20Impact%20of%20potassium%20doping&rft.jtitle=International%20journal%20of%20refractory%20metals%20&%20hard%20materials&rft.au=Terentyev,%20D.&rft.date=2018-11&rft.volume=76&rft.spage=226&rft.epage=233&rft.pages=226-233&rft.issn=0263-4368&rft.eissn=2213-3917&rft_id=info:doi/10.1016/j.ijrmhm.2018.07.002&rft_dat=%3Cproquest_cross%3E2110232169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110232169&rft_id=info:pmid/&rft_els_id=S0263436818301380&rfr_iscdi=true |