Strength and deformation mechanism of tungsten wires exposed to high temperature annealing: Impact of potassium doping

Recent efforts dedicated to the assessment of mechanical properties of tungsten wires, as means for fiber-reinforced composites, have shown that potassium (K) doping in the as-drawn state does not modify the mechanical properties of the wire. High temperature annealing (Ta up to 2300 °C) leads to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of refractory metals & hard materials 2018-11, Vol.76, p.226-233
Hauptverfasser: Terentyev, D., Riesch, J., Lebediev, S., Khvan, T., Dubinko, A., Bakaeva, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue
container_start_page 226
container_title International journal of refractory metals & hard materials
container_volume 76
creator Terentyev, D.
Riesch, J.
Lebediev, S.
Khvan, T.
Dubinko, A.
Bakaeva, A.
description Recent efforts dedicated to the assessment of mechanical properties of tungsten wires, as means for fiber-reinforced composites, have shown that potassium (K) doping in the as-drawn state does not modify the mechanical properties of the wire. High temperature annealing (Ta up to 2300 °C) leads to the severe embrittlement of the wire associated with the loss of fracture strength. In this work, we assess the transition behavior of pure and K-doped W wires exposed to the annealing in the temperature range of 1000–2300 °C to identify and recommend temperatures suitable for operation and fabrication of the fiber-reinforced composites. The results of mechanical tests performed in the temperature range of RT-500 °C are reported and substantiated by the electron microscopy analysis. Room temperature tests demonstrate that pure W wires become fully brittle after annealing above 1300 °C, whereas K-doped wires loses ductility above 2100 °C. With raising the test temperature to 300–500 °C, it is found that the strength of pure W wire reduces by a factor of two at Ta = 1000 °C (as compared to non-annealed wire), and goes down to 100 MPa at Ta = 1900 °C. The K-doping suppresses the reduction of the fracture strength at least up to Ta = 1900 °C, thus offering a temperature gap of ~600 °C for the use as reinforcement. •Effect of high temperature annealing on mechanical properties is studied in tungsten wire.•Potassium doping retains good strength of W wire up to 1900 °C.•Annealing at 1600 °C and above causes complete embrittlement of pure W wire.
doi_str_mv 10.1016/j.ijrmhm.2018.07.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2110232169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263436818301380</els_id><sourcerecordid>2110232169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-1215fc30bba79254f3684f8360c27c6bfc77e6b8e5e8d88c1dd4eb221c37463b3</originalsourceid><addsrcrecordid>eNp9kLtu2zAUhokgBeK4eYMOBDpL4UWm5AwFiiBtDBjIkHYmKPLIohCSKkk56duHhjNnOsN_Ofg_hL5RUlNCxe1U2ym60dWM0K4mbU0Iu0Arxiiv-Ja2l2hFmOBVw0V3ha5TmgghYivoCh2fcwR_yCNW3mADQ4hOZRs8dqBH5W1yOAw4L_6QMnj8aiMkDG9zSGBwDni0hxFncDNElZcIpceDerH-cId3blY6n_JzyColuzhswly0r-jLoF4S3HzcNfr76-HP_WO1f_q9u_-5rzTvSK4oo5tBc9L3qt2yTTOUAc3QcUE0a7XoB922IPoONtCZrtPUmAb6slvzthG852v0_dw7x_BvgZTlFJboy0vJKCWMMyq2xdWcXTqGlCIMco7WqfhfUiJPhOUkz4TlibAkrSyES-zHOQZlwdFClElb8BpMgaSzNMF-XvAOQsSIrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110232169</pqid></control><display><type>article</type><title>Strength and deformation mechanism of tungsten wires exposed to high temperature annealing: Impact of potassium doping</title><source>Elsevier ScienceDirect Journals</source><creator>Terentyev, D. ; Riesch, J. ; Lebediev, S. ; Khvan, T. ; Dubinko, A. ; Bakaeva, A.</creator><creatorcontrib>Terentyev, D. ; Riesch, J. ; Lebediev, S. ; Khvan, T. ; Dubinko, A. ; Bakaeva, A.</creatorcontrib><description>Recent efforts dedicated to the assessment of mechanical properties of tungsten wires, as means for fiber-reinforced composites, have shown that potassium (K) doping in the as-drawn state does not modify the mechanical properties of the wire. High temperature annealing (Ta up to 2300 °C) leads to the severe embrittlement of the wire associated with the loss of fracture strength. In this work, we assess the transition behavior of pure and K-doped W wires exposed to the annealing in the temperature range of 1000–2300 °C to identify and recommend temperatures suitable for operation and fabrication of the fiber-reinforced composites. The results of mechanical tests performed in the temperature range of RT-500 °C are reported and substantiated by the electron microscopy analysis. Room temperature tests demonstrate that pure W wires become fully brittle after annealing above 1300 °C, whereas K-doped wires loses ductility above 2100 °C. With raising the test temperature to 300–500 °C, it is found that the strength of pure W wire reduces by a factor of two at Ta = 1000 °C (as compared to non-annealed wire), and goes down to 100 MPa at Ta = 1900 °C. The K-doping suppresses the reduction of the fracture strength at least up to Ta = 1900 °C, thus offering a temperature gap of ~600 °C for the use as reinforcement. •Effect of high temperature annealing on mechanical properties is studied in tungsten wire.•Potassium doping retains good strength of W wire up to 1900 °C.•Annealing at 1600 °C and above causes complete embrittlement of pure W wire.</description><identifier>ISSN: 0263-4368</identifier><identifier>EISSN: 2213-3917</identifier><identifier>DOI: 10.1016/j.ijrmhm.2018.07.002</identifier><language>eng</language><publisher>Shrewsbury: Elsevier Ltd</publisher><subject>Annealing ; Composites ; Deformation ; Deformation mechanisms ; Doping ; Ductility tests ; Elastoplasticity ; Embrittlement ; Fiber ; Fiber composites ; Fracture strength ; Mechanical properties ; Mechanical tests ; Plasticity ; Potassium ; Potassium doped ; Recrystallization ; Temperature ; Tungsten ; Wire</subject><ispartof>International journal of refractory metals &amp; hard materials, 2018-11, Vol.76, p.226-233</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-1215fc30bba79254f3684f8360c27c6bfc77e6b8e5e8d88c1dd4eb221c37463b3</citedby><cites>FETCH-LOGICAL-c380t-1215fc30bba79254f3684f8360c27c6bfc77e6b8e5e8d88c1dd4eb221c37463b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrmhm.2018.07.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Riesch, J.</creatorcontrib><creatorcontrib>Lebediev, S.</creatorcontrib><creatorcontrib>Khvan, T.</creatorcontrib><creatorcontrib>Dubinko, A.</creatorcontrib><creatorcontrib>Bakaeva, A.</creatorcontrib><title>Strength and deformation mechanism of tungsten wires exposed to high temperature annealing: Impact of potassium doping</title><title>International journal of refractory metals &amp; hard materials</title><description>Recent efforts dedicated to the assessment of mechanical properties of tungsten wires, as means for fiber-reinforced composites, have shown that potassium (K) doping in the as-drawn state does not modify the mechanical properties of the wire. High temperature annealing (Ta up to 2300 °C) leads to the severe embrittlement of the wire associated with the loss of fracture strength. In this work, we assess the transition behavior of pure and K-doped W wires exposed to the annealing in the temperature range of 1000–2300 °C to identify and recommend temperatures suitable for operation and fabrication of the fiber-reinforced composites. The results of mechanical tests performed in the temperature range of RT-500 °C are reported and substantiated by the electron microscopy analysis. Room temperature tests demonstrate that pure W wires become fully brittle after annealing above 1300 °C, whereas K-doped wires loses ductility above 2100 °C. With raising the test temperature to 300–500 °C, it is found that the strength of pure W wire reduces by a factor of two at Ta = 1000 °C (as compared to non-annealed wire), and goes down to 100 MPa at Ta = 1900 °C. The K-doping suppresses the reduction of the fracture strength at least up to Ta = 1900 °C, thus offering a temperature gap of ~600 °C for the use as reinforcement. •Effect of high temperature annealing on mechanical properties is studied in tungsten wire.•Potassium doping retains good strength of W wire up to 1900 °C.•Annealing at 1600 °C and above causes complete embrittlement of pure W wire.</description><subject>Annealing</subject><subject>Composites</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Doping</subject><subject>Ductility tests</subject><subject>Elastoplasticity</subject><subject>Embrittlement</subject><subject>Fiber</subject><subject>Fiber composites</subject><subject>Fracture strength</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Plasticity</subject><subject>Potassium</subject><subject>Potassium doped</subject><subject>Recrystallization</subject><subject>Temperature</subject><subject>Tungsten</subject><subject>Wire</subject><issn>0263-4368</issn><issn>2213-3917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kLtu2zAUhokgBeK4eYMOBDpL4UWm5AwFiiBtDBjIkHYmKPLIohCSKkk56duHhjNnOsN_Ofg_hL5RUlNCxe1U2ym60dWM0K4mbU0Iu0Arxiiv-Ja2l2hFmOBVw0V3ha5TmgghYivoCh2fcwR_yCNW3mADQ4hOZRs8dqBH5W1yOAw4L_6QMnj8aiMkDG9zSGBwDni0hxFncDNElZcIpceDerH-cId3blY6n_JzyColuzhswly0r-jLoF4S3HzcNfr76-HP_WO1f_q9u_-5rzTvSK4oo5tBc9L3qt2yTTOUAc3QcUE0a7XoB922IPoONtCZrtPUmAb6slvzthG852v0_dw7x_BvgZTlFJboy0vJKCWMMyq2xdWcXTqGlCIMco7WqfhfUiJPhOUkz4TlibAkrSyES-zHOQZlwdFClElb8BpMgaSzNMF-XvAOQsSIrw</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Terentyev, D.</creator><creator>Riesch, J.</creator><creator>Lebediev, S.</creator><creator>Khvan, T.</creator><creator>Dubinko, A.</creator><creator>Bakaeva, A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201811</creationdate><title>Strength and deformation mechanism of tungsten wires exposed to high temperature annealing: Impact of potassium doping</title><author>Terentyev, D. ; Riesch, J. ; Lebediev, S. ; Khvan, T. ; Dubinko, A. ; Bakaeva, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-1215fc30bba79254f3684f8360c27c6bfc77e6b8e5e8d88c1dd4eb221c37463b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annealing</topic><topic>Composites</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Doping</topic><topic>Ductility tests</topic><topic>Elastoplasticity</topic><topic>Embrittlement</topic><topic>Fiber</topic><topic>Fiber composites</topic><topic>Fracture strength</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Plasticity</topic><topic>Potassium</topic><topic>Potassium doped</topic><topic>Recrystallization</topic><topic>Temperature</topic><topic>Tungsten</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Riesch, J.</creatorcontrib><creatorcontrib>Lebediev, S.</creatorcontrib><creatorcontrib>Khvan, T.</creatorcontrib><creatorcontrib>Dubinko, A.</creatorcontrib><creatorcontrib>Bakaeva, A.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of refractory metals &amp; hard materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terentyev, D.</au><au>Riesch, J.</au><au>Lebediev, S.</au><au>Khvan, T.</au><au>Dubinko, A.</au><au>Bakaeva, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strength and deformation mechanism of tungsten wires exposed to high temperature annealing: Impact of potassium doping</atitle><jtitle>International journal of refractory metals &amp; hard materials</jtitle><date>2018-11</date><risdate>2018</risdate><volume>76</volume><spage>226</spage><epage>233</epage><pages>226-233</pages><issn>0263-4368</issn><eissn>2213-3917</eissn><abstract>Recent efforts dedicated to the assessment of mechanical properties of tungsten wires, as means for fiber-reinforced composites, have shown that potassium (K) doping in the as-drawn state does not modify the mechanical properties of the wire. High temperature annealing (Ta up to 2300 °C) leads to the severe embrittlement of the wire associated with the loss of fracture strength. In this work, we assess the transition behavior of pure and K-doped W wires exposed to the annealing in the temperature range of 1000–2300 °C to identify and recommend temperatures suitable for operation and fabrication of the fiber-reinforced composites. The results of mechanical tests performed in the temperature range of RT-500 °C are reported and substantiated by the electron microscopy analysis. Room temperature tests demonstrate that pure W wires become fully brittle after annealing above 1300 °C, whereas K-doped wires loses ductility above 2100 °C. With raising the test temperature to 300–500 °C, it is found that the strength of pure W wire reduces by a factor of two at Ta = 1000 °C (as compared to non-annealed wire), and goes down to 100 MPa at Ta = 1900 °C. The K-doping suppresses the reduction of the fracture strength at least up to Ta = 1900 °C, thus offering a temperature gap of ~600 °C for the use as reinforcement. •Effect of high temperature annealing on mechanical properties is studied in tungsten wire.•Potassium doping retains good strength of W wire up to 1900 °C.•Annealing at 1600 °C and above causes complete embrittlement of pure W wire.</abstract><cop>Shrewsbury</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmhm.2018.07.002</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-4368
ispartof International journal of refractory metals & hard materials, 2018-11, Vol.76, p.226-233
issn 0263-4368
2213-3917
language eng
recordid cdi_proquest_journals_2110232169
source Elsevier ScienceDirect Journals
subjects Annealing
Composites
Deformation
Deformation mechanisms
Doping
Ductility tests
Elastoplasticity
Embrittlement
Fiber
Fiber composites
Fracture strength
Mechanical properties
Mechanical tests
Plasticity
Potassium
Potassium doped
Recrystallization
Temperature
Tungsten
Wire
title Strength and deformation mechanism of tungsten wires exposed to high temperature annealing: Impact of potassium doping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strength%20and%20deformation%20mechanism%20of%20tungsten%20wires%20exposed%20to%20high%20temperature%20annealing:%20Impact%20of%20potassium%20doping&rft.jtitle=International%20journal%20of%20refractory%20metals%20&%20hard%20materials&rft.au=Terentyev,%20D.&rft.date=2018-11&rft.volume=76&rft.spage=226&rft.epage=233&rft.pages=226-233&rft.issn=0263-4368&rft.eissn=2213-3917&rft_id=info:doi/10.1016/j.ijrmhm.2018.07.002&rft_dat=%3Cproquest_cross%3E2110232169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110232169&rft_id=info:pmid/&rft_els_id=S0263436818301380&rfr_iscdi=true