Modelling the data and not the images in FMRI

The standard approach to the analysis of functional magnetic resonance imaging (FMRI) data applies various preprocessing steps to the original FMRI. These preprocessings lead to a general underestimation of residual variance in the downstream analysis. This negatively impacts the type I error of sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-09
1. Verfasser: Thomas Wilhelm Dieter Möbius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Thomas Wilhelm Dieter Möbius
description The standard approach to the analysis of functional magnetic resonance imaging (FMRI) data applies various preprocessing steps to the original FMRI. These preprocessings lead to a general underestimation of residual variance in the downstream analysis. This negatively impacts the type I error of statistical tests and increases the risk for reporting false positive results. A genuine approach to the statistical analysis of FMRI data of brain scans is derived from first principles that is deeply rooted in statistical test theory. The method combines all preprocessing steps of the standard approach into one single modelling step, enabling valid statistical tests to be constructed. On population level, BOLD effects are modelled by random effects meta regression models. This acknowledges that subjects are random entities, and it acknowledges that the accuracy of the BOLD signal is estimated with various certainty in an FMRI. The concept of a reference scalar field is introduced that enables individual effect sizes to be related to each other with respect to a common unit. In particular, multicentre studies will gain interpretability and power by its use.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2110104620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2110104620</sourcerecordid><originalsourceid>FETCH-proquest_journals_21101046203</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9c1PSc3JycxLVyjJSFVISSxJVEjMS1HIyy8BC2TmJqanFitk5im4-QZ58jCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGhoYGhgYmZkYExcaoANv4wig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110104620</pqid></control><display><type>article</type><title>Modelling the data and not the images in FMRI</title><source>Free E- Journals</source><creator>Thomas Wilhelm Dieter Möbius</creator><creatorcontrib>Thomas Wilhelm Dieter Möbius</creatorcontrib><description>The standard approach to the analysis of functional magnetic resonance imaging (FMRI) data applies various preprocessing steps to the original FMRI. These preprocessings lead to a general underestimation of residual variance in the downstream analysis. This negatively impacts the type I error of statistical tests and increases the risk for reporting false positive results. A genuine approach to the statistical analysis of FMRI data of brain scans is derived from first principles that is deeply rooted in statistical test theory. The method combines all preprocessing steps of the standard approach into one single modelling step, enabling valid statistical tests to be constructed. On population level, BOLD effects are modelled by random effects meta regression models. This acknowledges that subjects are random entities, and it acknowledges that the accuracy of the BOLD signal is estimated with various certainty in an FMRI. The concept of a reference scalar field is introduced that enables individual effect sizes to be related to each other with respect to a common unit. In particular, multicentre studies will gain interpretability and power by its use.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brain ; First principles ; Magnetic resonance imaging ; Modelling ; Population (statistical) ; Preprocessing ; Regression analysis ; Regression models ; Statistical analysis ; Statistical tests ; Variance analysis</subject><ispartof>arXiv.org, 2018-09</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Thomas Wilhelm Dieter Möbius</creatorcontrib><title>Modelling the data and not the images in FMRI</title><title>arXiv.org</title><description>The standard approach to the analysis of functional magnetic resonance imaging (FMRI) data applies various preprocessing steps to the original FMRI. These preprocessings lead to a general underestimation of residual variance in the downstream analysis. This negatively impacts the type I error of statistical tests and increases the risk for reporting false positive results. A genuine approach to the statistical analysis of FMRI data of brain scans is derived from first principles that is deeply rooted in statistical test theory. The method combines all preprocessing steps of the standard approach into one single modelling step, enabling valid statistical tests to be constructed. On population level, BOLD effects are modelled by random effects meta regression models. This acknowledges that subjects are random entities, and it acknowledges that the accuracy of the BOLD signal is estimated with various certainty in an FMRI. The concept of a reference scalar field is introduced that enables individual effect sizes to be related to each other with respect to a common unit. In particular, multicentre studies will gain interpretability and power by its use.</description><subject>Brain</subject><subject>First principles</subject><subject>Magnetic resonance imaging</subject><subject>Modelling</subject><subject>Population (statistical)</subject><subject>Preprocessing</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Variance analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9c1PSc3JycxLVyjJSFVISSxJVEjMS1HIyy8BC2TmJqanFitk5im4-QZ58jCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGhoYGhgYmZkYExcaoANv4wig</recordid><startdate>20180919</startdate><enddate>20180919</enddate><creator>Thomas Wilhelm Dieter Möbius</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180919</creationdate><title>Modelling the data and not the images in FMRI</title><author>Thomas Wilhelm Dieter Möbius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21101046203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brain</topic><topic>First principles</topic><topic>Magnetic resonance imaging</topic><topic>Modelling</topic><topic>Population (statistical)</topic><topic>Preprocessing</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Variance analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Thomas Wilhelm Dieter Möbius</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas Wilhelm Dieter Möbius</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modelling the data and not the images in FMRI</atitle><jtitle>arXiv.org</jtitle><date>2018-09-19</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>The standard approach to the analysis of functional magnetic resonance imaging (FMRI) data applies various preprocessing steps to the original FMRI. These preprocessings lead to a general underestimation of residual variance in the downstream analysis. This negatively impacts the type I error of statistical tests and increases the risk for reporting false positive results. A genuine approach to the statistical analysis of FMRI data of brain scans is derived from first principles that is deeply rooted in statistical test theory. The method combines all preprocessing steps of the standard approach into one single modelling step, enabling valid statistical tests to be constructed. On population level, BOLD effects are modelled by random effects meta regression models. This acknowledges that subjects are random entities, and it acknowledges that the accuracy of the BOLD signal is estimated with various certainty in an FMRI. The concept of a reference scalar field is introduced that enables individual effect sizes to be related to each other with respect to a common unit. In particular, multicentre studies will gain interpretability and power by its use.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2110104620
source Free E- Journals
subjects Brain
First principles
Magnetic resonance imaging
Modelling
Population (statistical)
Preprocessing
Regression analysis
Regression models
Statistical analysis
Statistical tests
Variance analysis
title Modelling the data and not the images in FMRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modelling%20the%20data%20and%20not%20the%20images%20in%20FMRI&rft.jtitle=arXiv.org&rft.au=Thomas%20Wilhelm%20Dieter%20M%C3%B6bius&rft.date=2018-09-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2110104620%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110104620&rft_id=info:pmid/&rfr_iscdi=true