A New Partial Discharge Signal Denoising Algorithm Based on Adaptive Dual-Tree Complex Wavelet Transform

Denoising is a key step in diagnosis and evaluation of partial discharge (PD) signals in power transformers. In this paper, a new PD signal denoising algorithm is presented, which is based on the combination of dual-tree complex wavelet transform (DTCWT) and adaptive singular value decomposition (AS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2018-10, Vol.67 (10), p.2262-2272
Hauptverfasser: Ghorat, Mohsen, Gharehpetian, G. B., Latifi, Hamid, Hejazi, Maryam A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2272
container_issue 10
container_start_page 2262
container_title IEEE transactions on instrumentation and measurement
container_volume 67
creator Ghorat, Mohsen
Gharehpetian, G. B.
Latifi, Hamid
Hejazi, Maryam A.
description Denoising is a key step in diagnosis and evaluation of partial discharge (PD) signals in power transformers. In this paper, a new PD signal denoising algorithm is presented, which is based on the combination of dual-tree complex wavelet transform (DTCWT) and adaptive singular value decomposition (ASVD). This new algorithm, which is introduced as adaptive DTCWT (ADTCWT), was evaluated through simulations and experimental tests. ADTCWT was employed in denoising from PD signals based on the selection of best singular values in each DTCWT level decomposition, corresponding to PD signal and noise. The superior performance of the ADTCWT algorithm was demonstrated using various indices in comparison with those of DTCWT and ASVD methods in noise reduction, besides preserving time of arrival of PD signals and PD localization.
doi_str_mv 10.1109/TIM.2018.2816438
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2110102746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8331927</ieee_id><sourcerecordid>2110102746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-84541615895581c5931364c52f9e0d05d619dd327411cceeebf3ea839f63a7a63</originalsourceid><addsrcrecordid>eNo9kMtLw0AQhxdRsFbvgpcFz6k72ewme4ytj0J9gBGPYU0m6Za83E2r_vcmtHgamPl9M8xHyCWwGQBTN8nyaeYziGZ-BDLg0RGZgBChp6T0j8mEDSNPBUKekjPnNoyxUAbhhKxj-ozf9FXb3uiKLozL1tqWSN9M2YwNbFrjTFPSuCpba_p1TW-1w5y2DY1z3fVmh3Sx1ZWXWEQ6b-uuwh_6oXdYYU8TqxtXtLY-JyeFrhxeHOqUvN_fJfNHb_XysJzHKy_zFfReFIgAJIhICRFBJhQHLoNM-IVCljORS1B5zv0wAMgyRPwsOOqIq0JyHWrJp-R6v7ez7dcWXZ9u2q0dXnGpP4gCNqBjiu1TmW2ds1iknTW1tr8psHT0mQ4-09FnevA5IFd7xAxX_-MR56D8kP8BtOFwDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110102746</pqid></control><display><type>article</type><title>A New Partial Discharge Signal Denoising Algorithm Based on Adaptive Dual-Tree Complex Wavelet Transform</title><source>IEEE Electronic Library (IEL)</source><creator>Ghorat, Mohsen ; Gharehpetian, G. B. ; Latifi, Hamid ; Hejazi, Maryam A.</creator><creatorcontrib>Ghorat, Mohsen ; Gharehpetian, G. B. ; Latifi, Hamid ; Hejazi, Maryam A.</creatorcontrib><description>Denoising is a key step in diagnosis and evaluation of partial discharge (PD) signals in power transformers. In this paper, a new PD signal denoising algorithm is presented, which is based on the combination of dual-tree complex wavelet transform (DTCWT) and adaptive singular value decomposition (ASVD). This new algorithm, which is introduced as adaptive DTCWT (ADTCWT), was evaluated through simulations and experimental tests. ADTCWT was employed in denoising from PD signals based on the selection of best singular values in each DTCWT level decomposition, corresponding to PD signal and noise. The superior performance of the ADTCWT algorithm was demonstrated using various indices in comparison with those of DTCWT and ASVD methods in noise reduction, besides preserving time of arrival of PD signals and PD localization.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2018.2816438</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; Computer simulation ; Denoising ; Discharge ; Discrete wavelet transforms ; Eigenvalues and eigenfunctions ; Image reconstruction ; Noise reduction ; partial discharge (PD) ; Partial discharges ; Singular value decomposition ; singular value decomposition (SVD) ; wavelet transform ; Wavelet transforms</subject><ispartof>IEEE transactions on instrumentation and measurement, 2018-10, Vol.67 (10), p.2262-2272</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-84541615895581c5931364c52f9e0d05d619dd327411cceeebf3ea839f63a7a63</citedby><cites>FETCH-LOGICAL-c291t-84541615895581c5931364c52f9e0d05d619dd327411cceeebf3ea839f63a7a63</cites><orcidid>0000-0003-1521-790X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8331927$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8331927$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ghorat, Mohsen</creatorcontrib><creatorcontrib>Gharehpetian, G. B.</creatorcontrib><creatorcontrib>Latifi, Hamid</creatorcontrib><creatorcontrib>Hejazi, Maryam A.</creatorcontrib><title>A New Partial Discharge Signal Denoising Algorithm Based on Adaptive Dual-Tree Complex Wavelet Transform</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Denoising is a key step in diagnosis and evaluation of partial discharge (PD) signals in power transformers. In this paper, a new PD signal denoising algorithm is presented, which is based on the combination of dual-tree complex wavelet transform (DTCWT) and adaptive singular value decomposition (ASVD). This new algorithm, which is introduced as adaptive DTCWT (ADTCWT), was evaluated through simulations and experimental tests. ADTCWT was employed in denoising from PD signals based on the selection of best singular values in each DTCWT level decomposition, corresponding to PD signal and noise. The superior performance of the ADTCWT algorithm was demonstrated using various indices in comparison with those of DTCWT and ASVD methods in noise reduction, besides preserving time of arrival of PD signals and PD localization.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Denoising</subject><subject>Discharge</subject><subject>Discrete wavelet transforms</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Image reconstruction</subject><subject>Noise reduction</subject><subject>partial discharge (PD)</subject><subject>Partial discharges</subject><subject>Singular value decomposition</subject><subject>singular value decomposition (SVD)</subject><subject>wavelet transform</subject><subject>Wavelet transforms</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLw0AQhxdRsFbvgpcFz6k72ewme4ytj0J9gBGPYU0m6Za83E2r_vcmtHgamPl9M8xHyCWwGQBTN8nyaeYziGZ-BDLg0RGZgBChp6T0j8mEDSNPBUKekjPnNoyxUAbhhKxj-ozf9FXb3uiKLozL1tqWSN9M2YwNbFrjTFPSuCpba_p1TW-1w5y2DY1z3fVmh3Sx1ZWXWEQ6b-uuwh_6oXdYYU8TqxtXtLY-JyeFrhxeHOqUvN_fJfNHb_XysJzHKy_zFfReFIgAJIhICRFBJhQHLoNM-IVCljORS1B5zv0wAMgyRPwsOOqIq0JyHWrJp-R6v7ez7dcWXZ9u2q0dXnGpP4gCNqBjiu1TmW2ds1iknTW1tr8psHT0mQ4-09FnevA5IFd7xAxX_-MR56D8kP8BtOFwDw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Ghorat, Mohsen</creator><creator>Gharehpetian, G. B.</creator><creator>Latifi, Hamid</creator><creator>Hejazi, Maryam A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1521-790X</orcidid></search><sort><creationdate>20181001</creationdate><title>A New Partial Discharge Signal Denoising Algorithm Based on Adaptive Dual-Tree Complex Wavelet Transform</title><author>Ghorat, Mohsen ; Gharehpetian, G. B. ; Latifi, Hamid ; Hejazi, Maryam A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-84541615895581c5931364c52f9e0d05d619dd327411cceeebf3ea839f63a7a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Denoising</topic><topic>Discharge</topic><topic>Discrete wavelet transforms</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Image reconstruction</topic><topic>Noise reduction</topic><topic>partial discharge (PD)</topic><topic>Partial discharges</topic><topic>Singular value decomposition</topic><topic>singular value decomposition (SVD)</topic><topic>wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghorat, Mohsen</creatorcontrib><creatorcontrib>Gharehpetian, G. B.</creatorcontrib><creatorcontrib>Latifi, Hamid</creatorcontrib><creatorcontrib>Hejazi, Maryam A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ghorat, Mohsen</au><au>Gharehpetian, G. B.</au><au>Latifi, Hamid</au><au>Hejazi, Maryam A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Partial Discharge Signal Denoising Algorithm Based on Adaptive Dual-Tree Complex Wavelet Transform</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>67</volume><issue>10</issue><spage>2262</spage><epage>2272</epage><pages>2262-2272</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Denoising is a key step in diagnosis and evaluation of partial discharge (PD) signals in power transformers. In this paper, a new PD signal denoising algorithm is presented, which is based on the combination of dual-tree complex wavelet transform (DTCWT) and adaptive singular value decomposition (ASVD). This new algorithm, which is introduced as adaptive DTCWT (ADTCWT), was evaluated through simulations and experimental tests. ADTCWT was employed in denoising from PD signals based on the selection of best singular values in each DTCWT level decomposition, corresponding to PD signal and noise. The superior performance of the ADTCWT algorithm was demonstrated using various indices in comparison with those of DTCWT and ASVD methods in noise reduction, besides preserving time of arrival of PD signals and PD localization.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2018.2816438</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1521-790X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2018-10, Vol.67 (10), p.2262-2272
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2110102746
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Algorithms
Computer simulation
Denoising
Discharge
Discrete wavelet transforms
Eigenvalues and eigenfunctions
Image reconstruction
Noise reduction
partial discharge (PD)
Partial discharges
Singular value decomposition
singular value decomposition (SVD)
wavelet transform
Wavelet transforms
title A New Partial Discharge Signal Denoising Algorithm Based on Adaptive Dual-Tree Complex Wavelet Transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Partial%20Discharge%20Signal%20Denoising%20Algorithm%20Based%20on%20Adaptive%20Dual-Tree%20Complex%20Wavelet%20Transform&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Ghorat,%20Mohsen&rft.date=2018-10-01&rft.volume=67&rft.issue=10&rft.spage=2262&rft.epage=2272&rft.pages=2262-2272&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2018.2816438&rft_dat=%3Cproquest_RIE%3E2110102746%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110102746&rft_id=info:pmid/&rft_ieee_id=8331927&rfr_iscdi=true