Differential and Falsified Sampling Expansions

Differential and falsified sampling expansions ∑ k ∈ Z d c k φ ( M j x + k ) , where M is a matrix dilation, are studied. In the case of differential expansions, c k = L f ( M - j · ) ( - k ) , where L is an appropriate differential operator. For a large class of functions φ , the approximation orde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2018-10, Vol.24 (5), p.1276-1305
Hauptverfasser: Kolomoitsev, Yu, Krivoshein, A., Skopina, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1305
container_issue 5
container_start_page 1276
container_title The Journal of fourier analysis and applications
container_volume 24
creator Kolomoitsev, Yu
Krivoshein, A.
Skopina, M.
description Differential and falsified sampling expansions ∑ k ∈ Z d c k φ ( M j x + k ) , where M is a matrix dilation, are studied. In the case of differential expansions, c k = L f ( M - j · ) ( - k ) , where L is an appropriate differential operator. For a large class of functions φ , the approximation order of differential expansions was recently studied. Some smoothness of the Fourier transform of φ from this class is required. In the present paper, we obtain similar results for a class of band-limited functions φ with the discontinuous Fourier transform. In the case of falsified expansions, c k  is the mathematical expectation of random integral average of a signal f near the point M - j k . To estimate the approximation order of the falsified sampling expansions we compare them with the differential expansions. Error estimations in L p -norm are given in terms of the Fourier transform of f .
doi_str_mv 10.1007/s00041-017-9559-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2110076044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718439922</galeid><sourcerecordid>A718439922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-384ee34252436b34cf8dfcafa4e40a149acc5186887446c8daa6e9af37d38add3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC562ZTbKbPZbaqlDwoJ7DmD8lZZtdky3otzdlBU-SQ4bM-73JPEJugS6A0uY-UUo5lBSashWiLeGMzEAwKIUUcJ5rWre5rttLcpXSntIKWMNmZPHgnbPRhtFjV2AwxQa75J23pnjFw9D5sCvWXwOG5PuQrsmFy31783vPyftm_bZ6Krcvj8-r5bbUTIixZJJby3glKs7qD8a1k8ZpdMgtpwi8Ra0FyFrKhvNaS4NY2xYdawyTaAybk7vJd4j959GmUe37Ywx5pKrgtHBNOc-qxaTaYWeVD64fI-p8jD143QfrfH5fNiA5a9uqygBMgI59StE6NUR_wPitgKqTrZpyVDlHdcpRQWaqiUlZG3Y2_n3lf-gHgI10Ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110076044</pqid></control><display><type>article</type><title>Differential and Falsified Sampling Expansions</title><source>Springer Nature - Complete Springer Journals</source><creator>Kolomoitsev, Yu ; Krivoshein, A. ; Skopina, M.</creator><creatorcontrib>Kolomoitsev, Yu ; Krivoshein, A. ; Skopina, M.</creatorcontrib><description>Differential and falsified sampling expansions ∑ k ∈ Z d c k φ ( M j x + k ) , where M is a matrix dilation, are studied. In the case of differential expansions, c k = L f ( M - j · ) ( - k ) , where L is an appropriate differential operator. For a large class of functions φ , the approximation order of differential expansions was recently studied. Some smoothness of the Fourier transform of φ from this class is required. In the present paper, we obtain similar results for a class of band-limited functions φ with the discontinuous Fourier transform. In the case of falsified expansions, c k  is the mathematical expectation of random integral average of a signal f near the point M - j k . To estimate the approximation order of the falsified sampling expansions we compare them with the differential expansions. Error estimations in L p -norm are given in terms of the Fourier transform of f .</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-017-9559-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximation ; Approximations and Expansions ; Differential equations ; Fourier Analysis ; Fourier transforms ; Mathematical analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Operators (mathematics) ; Partial Differential Equations ; Sampling ; Signal,Image and Speech Processing ; Smoothness</subject><ispartof>The Journal of fourier analysis and applications, 2018-10, Vol.24 (5), p.1276-1305</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-384ee34252436b34cf8dfcafa4e40a149acc5186887446c8daa6e9af37d38add3</citedby><cites>FETCH-LOGICAL-c355t-384ee34252436b34cf8dfcafa4e40a149acc5186887446c8daa6e9af37d38add3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-017-9559-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-017-9559-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Kolomoitsev, Yu</creatorcontrib><creatorcontrib>Krivoshein, A.</creatorcontrib><creatorcontrib>Skopina, M.</creatorcontrib><title>Differential and Falsified Sampling Expansions</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>Differential and falsified sampling expansions ∑ k ∈ Z d c k φ ( M j x + k ) , where M is a matrix dilation, are studied. In the case of differential expansions, c k = L f ( M - j · ) ( - k ) , where L is an appropriate differential operator. For a large class of functions φ , the approximation order of differential expansions was recently studied. Some smoothness of the Fourier transform of φ from this class is required. In the present paper, we obtain similar results for a class of band-limited functions φ with the discontinuous Fourier transform. In the case of falsified expansions, c k  is the mathematical expectation of random integral average of a signal f near the point M - j k . To estimate the approximation order of the falsified sampling expansions we compare them with the differential expansions. Error estimations in L p -norm are given in terms of the Fourier transform of f .</description><subject>Abstract Harmonic Analysis</subject><subject>Approximation</subject><subject>Approximations and Expansions</subject><subject>Differential equations</subject><subject>Fourier Analysis</subject><subject>Fourier transforms</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Operators (mathematics)</subject><subject>Partial Differential Equations</subject><subject>Sampling</subject><subject>Signal,Image and Speech Processing</subject><subject>Smoothness</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuC562ZTbKbPZbaqlDwoJ7DmD8lZZtdky3otzdlBU-SQ4bM-73JPEJugS6A0uY-UUo5lBSashWiLeGMzEAwKIUUcJ5rWre5rttLcpXSntIKWMNmZPHgnbPRhtFjV2AwxQa75J23pnjFw9D5sCvWXwOG5PuQrsmFy31783vPyftm_bZ6Krcvj8-r5bbUTIixZJJby3glKs7qD8a1k8ZpdMgtpwi8Ra0FyFrKhvNaS4NY2xYdawyTaAybk7vJd4j959GmUe37Ywx5pKrgtHBNOc-qxaTaYWeVD64fI-p8jD143QfrfH5fNiA5a9uqygBMgI59StE6NUR_wPitgKqTrZpyVDlHdcpRQWaqiUlZG3Y2_n3lf-gHgI10Ag</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Kolomoitsev, Yu</creator><creator>Krivoshein, A.</creator><creator>Skopina, M.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181001</creationdate><title>Differential and Falsified Sampling Expansions</title><author>Kolomoitsev, Yu ; Krivoshein, A. ; Skopina, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-384ee34252436b34cf8dfcafa4e40a149acc5186887446c8daa6e9af37d38add3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximation</topic><topic>Approximations and Expansions</topic><topic>Differential equations</topic><topic>Fourier Analysis</topic><topic>Fourier transforms</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Operators (mathematics)</topic><topic>Partial Differential Equations</topic><topic>Sampling</topic><topic>Signal,Image and Speech Processing</topic><topic>Smoothness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolomoitsev, Yu</creatorcontrib><creatorcontrib>Krivoshein, A.</creatorcontrib><creatorcontrib>Skopina, M.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolomoitsev, Yu</au><au>Krivoshein, A.</au><au>Skopina, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential and Falsified Sampling Expansions</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>24</volume><issue>5</issue><spage>1276</spage><epage>1305</epage><pages>1276-1305</pages><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>Differential and falsified sampling expansions ∑ k ∈ Z d c k φ ( M j x + k ) , where M is a matrix dilation, are studied. In the case of differential expansions, c k = L f ( M - j · ) ( - k ) , where L is an appropriate differential operator. For a large class of functions φ , the approximation order of differential expansions was recently studied. Some smoothness of the Fourier transform of φ from this class is required. In the present paper, we obtain similar results for a class of band-limited functions φ with the discontinuous Fourier transform. In the case of falsified expansions, c k  is the mathematical expectation of random integral average of a signal f near the point M - j k . To estimate the approximation order of the falsified sampling expansions we compare them with the differential expansions. Error estimations in L p -norm are given in terms of the Fourier transform of f .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-017-9559-1</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2018-10, Vol.24 (5), p.1276-1305
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_2110076044
source Springer Nature - Complete Springer Journals
subjects Abstract Harmonic Analysis
Approximation
Approximations and Expansions
Differential equations
Fourier Analysis
Fourier transforms
Mathematical analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Matrix methods
Operators (mathematics)
Partial Differential Equations
Sampling
Signal,Image and Speech Processing
Smoothness
title Differential and Falsified Sampling Expansions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20and%20Falsified%20Sampling%20Expansions&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Kolomoitsev,%20Yu&rft.date=2018-10-01&rft.volume=24&rft.issue=5&rft.spage=1276&rft.epage=1305&rft.pages=1276-1305&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-017-9559-1&rft_dat=%3Cgale_proqu%3EA718439922%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110076044&rft_id=info:pmid/&rft_galeid=A718439922&rfr_iscdi=true