An Efficient Grid-Based K-Prototypes Algorithm for Sustainable Decision-Making on Spatial Objects

Data mining plays a critical role in sustainable decision-making. Although the k-prototypes algorithm is one of the best-known algorithms for clustering both numeric and categorical data, clustering a large number of spatial objects with mixed numeric and categorical attributes is still inefficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2018-07, Vol.10 (8), p.2614
Hauptverfasser: Jang, Hong-Jun, Kim, Byoungwook, Kim, Jongwan, Jung, Soon-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 2614
container_title Sustainability
container_volume 10
creator Jang, Hong-Jun
Kim, Byoungwook
Kim, Jongwan
Jung, Soon-Young
description Data mining plays a critical role in sustainable decision-making. Although the k-prototypes algorithm is one of the best-known algorithms for clustering both numeric and categorical data, clustering a large number of spatial objects with mixed numeric and categorical attributes is still inefficient due to complexity. In this paper, we propose an efficient grid-based k-prototypes algorithm, GK-prototypes, which achieves high performance for clustering spatial objects. The first proposed algorithm utilizes both maximum and minimum distance between cluster centers and a cell, which can reduce unnecessary distance calculation. The second proposed algorithm as an extension of the first proposed algorithm, utilizes spatial dependence; spatial data tends to be similar to objects that are close. Each cell has a bitmap index which stores the categorical values of all objects within the same cell for each attribute. This bitmap index can improve performance if the categorical data is skewed. Experimental results show that the proposed algorithms can achieve better performance than the existing pruning techniques of the k-prototypes algorithm.
doi_str_mv 10.3390/su10082614
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2110057196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2110057196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-e62dfc9fd0c4e7825dc92c1de01b4628a7bef8452458bfd1912d3b013060e8663</originalsourceid><addsrcrecordid>eNpNkE1LAzEYhIMoWGov_oKANyGaj93s7rHWtoqVCtXzks1HTd0ma5I99N-7pYLOZeYwzPvyAHBN8B1jFb6PPcG4pJxkZ2BEcUEQwTk-_5cvwSTGHR7EGKkIHwExdXBujJVWuwSXwSr0IKJW8AW9BZ98OnQ6wmm79cGmzz00PsBNH5OwTjStho9a2mi9Q6_iy7ot9A5uOpGsaOG62WmZ4hW4MKKNevLrY_CxmL_PntBqvXyeTVdI0ipPSHOqjKyMwjLTRUlzJSsqidKYNBmnpSgabcosp1leNkYN31PFGkwY5liXnLMxuDntdsF_9zqmeuf74IaTNSUDmLwg1bF1e2rJ4GMM2tRdsHsRDjXB9ZFi_UeR_QCHIWPC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110057196</pqid></control><display><type>article</type><title>An Efficient Grid-Based K-Prototypes Algorithm for Sustainable Decision-Making on Spatial Objects</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jang, Hong-Jun ; Kim, Byoungwook ; Kim, Jongwan ; Jung, Soon-Young</creator><creatorcontrib>Jang, Hong-Jun ; Kim, Byoungwook ; Kim, Jongwan ; Jung, Soon-Young</creatorcontrib><description>Data mining plays a critical role in sustainable decision-making. Although the k-prototypes algorithm is one of the best-known algorithms for clustering both numeric and categorical data, clustering a large number of spatial objects with mixed numeric and categorical attributes is still inefficient due to complexity. In this paper, we propose an efficient grid-based k-prototypes algorithm, GK-prototypes, which achieves high performance for clustering spatial objects. The first proposed algorithm utilizes both maximum and minimum distance between cluster centers and a cell, which can reduce unnecessary distance calculation. The second proposed algorithm as an extension of the first proposed algorithm, utilizes spatial dependence; spatial data tends to be similar to objects that are close. Each cell has a bitmap index which stores the categorical values of all objects within the same cell for each attribute. This bitmap index can improve performance if the categorical data is skewed. Experimental results show that the proposed algorithms can achieve better performance than the existing pruning techniques of the k-prototypes algorithm.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su10082614</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Clustering ; Data processing ; Decision making ; Dependence ; Prototypes ; Pruning ; Spatial data ; Sustainability</subject><ispartof>Sustainability, 2018-07, Vol.10 (8), p.2614</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-e62dfc9fd0c4e7825dc92c1de01b4628a7bef8452458bfd1912d3b013060e8663</citedby><cites>FETCH-LOGICAL-c295t-e62dfc9fd0c4e7825dc92c1de01b4628a7bef8452458bfd1912d3b013060e8663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jang, Hong-Jun</creatorcontrib><creatorcontrib>Kim, Byoungwook</creatorcontrib><creatorcontrib>Kim, Jongwan</creatorcontrib><creatorcontrib>Jung, Soon-Young</creatorcontrib><title>An Efficient Grid-Based K-Prototypes Algorithm for Sustainable Decision-Making on Spatial Objects</title><title>Sustainability</title><description>Data mining plays a critical role in sustainable decision-making. Although the k-prototypes algorithm is one of the best-known algorithms for clustering both numeric and categorical data, clustering a large number of spatial objects with mixed numeric and categorical attributes is still inefficient due to complexity. In this paper, we propose an efficient grid-based k-prototypes algorithm, GK-prototypes, which achieves high performance for clustering spatial objects. The first proposed algorithm utilizes both maximum and minimum distance between cluster centers and a cell, which can reduce unnecessary distance calculation. The second proposed algorithm as an extension of the first proposed algorithm, utilizes spatial dependence; spatial data tends to be similar to objects that are close. Each cell has a bitmap index which stores the categorical values of all objects within the same cell for each attribute. This bitmap index can improve performance if the categorical data is skewed. Experimental results show that the proposed algorithms can achieve better performance than the existing pruning techniques of the k-prototypes algorithm.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Data processing</subject><subject>Decision making</subject><subject>Dependence</subject><subject>Prototypes</subject><subject>Pruning</subject><subject>Spatial data</subject><subject>Sustainability</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkE1LAzEYhIMoWGov_oKANyGaj93s7rHWtoqVCtXzks1HTd0ma5I99N-7pYLOZeYwzPvyAHBN8B1jFb6PPcG4pJxkZ2BEcUEQwTk-_5cvwSTGHR7EGKkIHwExdXBujJVWuwSXwSr0IKJW8AW9BZ98OnQ6wmm79cGmzz00PsBNH5OwTjStho9a2mi9Q6_iy7ot9A5uOpGsaOG62WmZ4hW4MKKNevLrY_CxmL_PntBqvXyeTVdI0ipPSHOqjKyMwjLTRUlzJSsqidKYNBmnpSgabcosp1leNkYN31PFGkwY5liXnLMxuDntdsF_9zqmeuf74IaTNSUDmLwg1bF1e2rJ4GMM2tRdsHsRDjXB9ZFi_UeR_QCHIWPC</recordid><startdate>20180725</startdate><enddate>20180725</enddate><creator>Jang, Hong-Jun</creator><creator>Kim, Byoungwook</creator><creator>Kim, Jongwan</creator><creator>Jung, Soon-Young</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20180725</creationdate><title>An Efficient Grid-Based K-Prototypes Algorithm for Sustainable Decision-Making on Spatial Objects</title><author>Jang, Hong-Jun ; Kim, Byoungwook ; Kim, Jongwan ; Jung, Soon-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-e62dfc9fd0c4e7825dc92c1de01b4628a7bef8452458bfd1912d3b013060e8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Data processing</topic><topic>Decision making</topic><topic>Dependence</topic><topic>Prototypes</topic><topic>Pruning</topic><topic>Spatial data</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Hong-Jun</creatorcontrib><creatorcontrib>Kim, Byoungwook</creatorcontrib><creatorcontrib>Kim, Jongwan</creatorcontrib><creatorcontrib>Jung, Soon-Young</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Hong-Jun</au><au>Kim, Byoungwook</au><au>Kim, Jongwan</au><au>Jung, Soon-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Grid-Based K-Prototypes Algorithm for Sustainable Decision-Making on Spatial Objects</atitle><jtitle>Sustainability</jtitle><date>2018-07-25</date><risdate>2018</risdate><volume>10</volume><issue>8</issue><spage>2614</spage><pages>2614-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Data mining plays a critical role in sustainable decision-making. Although the k-prototypes algorithm is one of the best-known algorithms for clustering both numeric and categorical data, clustering a large number of spatial objects with mixed numeric and categorical attributes is still inefficient due to complexity. In this paper, we propose an efficient grid-based k-prototypes algorithm, GK-prototypes, which achieves high performance for clustering spatial objects. The first proposed algorithm utilizes both maximum and minimum distance between cluster centers and a cell, which can reduce unnecessary distance calculation. The second proposed algorithm as an extension of the first proposed algorithm, utilizes spatial dependence; spatial data tends to be similar to objects that are close. Each cell has a bitmap index which stores the categorical values of all objects within the same cell for each attribute. This bitmap index can improve performance if the categorical data is skewed. Experimental results show that the proposed algorithms can achieve better performance than the existing pruning techniques of the k-prototypes algorithm.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su10082614</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2018-07, Vol.10 (8), p.2614
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2110057196
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Clustering
Data processing
Decision making
Dependence
Prototypes
Pruning
Spatial data
Sustainability
title An Efficient Grid-Based K-Prototypes Algorithm for Sustainable Decision-Making on Spatial Objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Grid-Based%20K-Prototypes%20Algorithm%20for%20Sustainable%20Decision-Making%20on%20Spatial%20Objects&rft.jtitle=Sustainability&rft.au=Jang,%20Hong-Jun&rft.date=2018-07-25&rft.volume=10&rft.issue=8&rft.spage=2614&rft.pages=2614-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su10082614&rft_dat=%3Cproquest_cross%3E2110057196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110057196&rft_id=info:pmid/&rfr_iscdi=true