Molecular strategies to increase yeast iron accumulation and resistance

All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under phy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallomics 2018-09, Vol.10 (9), p.1245-1256
Hauptverfasser: Ramos-Alonso, Lucía, Wittmaack, Nadine, Mulet, Isabel, Martínez-Garay, Carlos A, Fita-Torró, Josep, Lozano, María Jesús, Romero, Antonia M, García-Ferris, Carlos, Martínez-Pastor, María Teresa, Puig, Sergi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1256
container_issue 9
container_start_page 1245
container_title Metallomics
container_volume 10
creator Ramos-Alonso, Lucía
Wittmaack, Nadine
Mulet, Isabel
Martínez-Garay, Carlos A
Fita-Torró, Josep
Lozano, María Jesús
Romero, Antonia M
García-Ferris, Carlos
Martínez-Pastor, María Teresa
Puig, Sergi
description All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under physiological conditions increases the prevalence of iron deficiency anemia. A common strategy to treat iron deficiency consists of dietary iron supplementation. The baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, but also as a feed supplement. In response to iron deficiency, the yeast Aft1 transcription factor activates cellular iron acquisition. However, when constitutively active, Aft1 inhibits growth probably due to iron toxicity. In this report, we have studied the consequences of using hyperactive AFT1 alleles, including AFT1-1UP, to increase yeast iron accumulation. We first characterized the iron sensitivity of cells expressing different constitutively active AFT1 alleles. We rescued the high iron sensitivity conferred by the AFT1 alleles by deleting the sphingolipid signaling kinase YPK1. We observed that the deletion of YPK1 exerts different effects on iron accumulation depending on the AFT1 allele and the environmental iron. Moreover, we determined that the impairment of the high-affinity iron transport system partially rescues the high iron toxicity of AFT1-1UP-expressing cells. Finally, we observed that AFT1-1UP inhibits oxygen consumption through activation of the RNA-binding protein Cth2. Deletion of CTH2 partially rescues the AFT1-1UP negative respiratory effect. Collectively, these results contribute to understand how the Aft1 transcription factor functions and the multiple consequences derived from its constitutive activation.
doi_str_mv 10.1039/c8mt00124c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2110053404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2110053404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-6704f3c2d129d5f601962dcb9f99b65c1a507b214b78193e58e040d7e5272f603</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4Mobk4v_gFS8CZU30uapDlK0SlseJngraRpKh1rO5P0sP_ezM1d3g_48H28DyG3CI8ITD2ZvAsASDNzRqYouUi5wq_z0ww4IVferwFEBsAvyYQBMgk5nZL5cthYM260S3xwOtjv1vokDEnbG2e1t8ku1pC0bugTbczYRTa0-6WvE2d964Pujb0mF43eeHtz7DPy-fqyKt7Sxcf8vXhepIZxEVIhIWuYoTVSVfNGACpBa1OpRqlKcIOag6woZpXMUTHLcwsZ1NJyKmnE2YzcH3K3bvgZrQ_lehhdH0-WFDF-xzLIIvVwoIwbvHe2Kbeu7bTblQjl3llZ5MvVn7MiwnfHyLHqbH1C_yWxX7WdZfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110053404</pqid></control><display><type>article</type><title>Molecular strategies to increase yeast iron accumulation and resistance</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Ramos-Alonso, Lucía ; Wittmaack, Nadine ; Mulet, Isabel ; Martínez-Garay, Carlos A ; Fita-Torró, Josep ; Lozano, María Jesús ; Romero, Antonia M ; García-Ferris, Carlos ; Martínez-Pastor, María Teresa ; Puig, Sergi</creator><creatorcontrib>Ramos-Alonso, Lucía ; Wittmaack, Nadine ; Mulet, Isabel ; Martínez-Garay, Carlos A ; Fita-Torró, Josep ; Lozano, María Jesús ; Romero, Antonia M ; García-Ferris, Carlos ; Martínez-Pastor, María Teresa ; Puig, Sergi</creatorcontrib><description>All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under physiological conditions increases the prevalence of iron deficiency anemia. A common strategy to treat iron deficiency consists of dietary iron supplementation. The baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, but also as a feed supplement. In response to iron deficiency, the yeast Aft1 transcription factor activates cellular iron acquisition. However, when constitutively active, Aft1 inhibits growth probably due to iron toxicity. In this report, we have studied the consequences of using hyperactive AFT1 alleles, including AFT1-1UP, to increase yeast iron accumulation. We first characterized the iron sensitivity of cells expressing different constitutively active AFT1 alleles. We rescued the high iron sensitivity conferred by the AFT1 alleles by deleting the sphingolipid signaling kinase YPK1. We observed that the deletion of YPK1 exerts different effects on iron accumulation depending on the AFT1 allele and the environmental iron. Moreover, we determined that the impairment of the high-affinity iron transport system partially rescues the high iron toxicity of AFT1-1UP-expressing cells. Finally, we observed that AFT1-1UP inhibits oxygen consumption through activation of the RNA-binding protein Cth2. Deletion of CTH2 partially rescues the AFT1-1UP negative respiratory effect. Collectively, these results contribute to understand how the Aft1 transcription factor functions and the multiple consequences derived from its constitutive activation.</description><identifier>ISSN: 1756-5901</identifier><identifier>EISSN: 1756-591X</identifier><identifier>DOI: 10.1039/c8mt00124c</identifier><identifier>PMID: 30137082</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Accumulation ; Activation ; Alleles ; Anemia ; Baking yeast ; Biological activity ; Clonal deletion ; Diet ; Dietary supplements ; Feed supplements ; Gene Expression Regulation, Fungal - genetics ; Iron ; Iron - metabolism ; Iron deficiency ; Macromolecules ; Nutrient deficiency ; Oxygen consumption ; Proteins ; Reactive oxygen species ; Ribonucleic acid ; RNA ; RNA-binding protein ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Sensitivity ; Toxicity ; Transcription factors ; Transcription, Genetic - genetics ; Yeast</subject><ispartof>Metallomics, 2018-09, Vol.10 (9), p.1245-1256</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-6704f3c2d129d5f601962dcb9f99b65c1a507b214b78193e58e040d7e5272f603</citedby><cites>FETCH-LOGICAL-c356t-6704f3c2d129d5f601962dcb9f99b65c1a507b214b78193e58e040d7e5272f603</cites><orcidid>0000-0003-4549-4078 ; 0000-0002-1828-4115 ; 0000-0002-1856-490X ; 0000-0002-2727-279X ; 0000-0002-4128-958X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30137082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramos-Alonso, Lucía</creatorcontrib><creatorcontrib>Wittmaack, Nadine</creatorcontrib><creatorcontrib>Mulet, Isabel</creatorcontrib><creatorcontrib>Martínez-Garay, Carlos A</creatorcontrib><creatorcontrib>Fita-Torró, Josep</creatorcontrib><creatorcontrib>Lozano, María Jesús</creatorcontrib><creatorcontrib>Romero, Antonia M</creatorcontrib><creatorcontrib>García-Ferris, Carlos</creatorcontrib><creatorcontrib>Martínez-Pastor, María Teresa</creatorcontrib><creatorcontrib>Puig, Sergi</creatorcontrib><title>Molecular strategies to increase yeast iron accumulation and resistance</title><title>Metallomics</title><addtitle>Metallomics</addtitle><description>All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under physiological conditions increases the prevalence of iron deficiency anemia. A common strategy to treat iron deficiency consists of dietary iron supplementation. The baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, but also as a feed supplement. In response to iron deficiency, the yeast Aft1 transcription factor activates cellular iron acquisition. However, when constitutively active, Aft1 inhibits growth probably due to iron toxicity. In this report, we have studied the consequences of using hyperactive AFT1 alleles, including AFT1-1UP, to increase yeast iron accumulation. We first characterized the iron sensitivity of cells expressing different constitutively active AFT1 alleles. We rescued the high iron sensitivity conferred by the AFT1 alleles by deleting the sphingolipid signaling kinase YPK1. We observed that the deletion of YPK1 exerts different effects on iron accumulation depending on the AFT1 allele and the environmental iron. Moreover, we determined that the impairment of the high-affinity iron transport system partially rescues the high iron toxicity of AFT1-1UP-expressing cells. Finally, we observed that AFT1-1UP inhibits oxygen consumption through activation of the RNA-binding protein Cth2. Deletion of CTH2 partially rescues the AFT1-1UP negative respiratory effect. Collectively, these results contribute to understand how the Aft1 transcription factor functions and the multiple consequences derived from its constitutive activation.</description><subject>Accumulation</subject><subject>Activation</subject><subject>Alleles</subject><subject>Anemia</subject><subject>Baking yeast</subject><subject>Biological activity</subject><subject>Clonal deletion</subject><subject>Diet</subject><subject>Dietary supplements</subject><subject>Feed supplements</subject><subject>Gene Expression Regulation, Fungal - genetics</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron deficiency</subject><subject>Macromolecules</subject><subject>Nutrient deficiency</subject><subject>Oxygen consumption</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-binding protein</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sensitivity</subject><subject>Toxicity</subject><subject>Transcription factors</subject><subject>Transcription, Genetic - genetics</subject><subject>Yeast</subject><issn>1756-5901</issn><issn>1756-591X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kM9LwzAUx4Mobk4v_gFS8CZU30uapDlK0SlseJngraRpKh1rO5P0sP_ezM1d3g_48H28DyG3CI8ITD2ZvAsASDNzRqYouUi5wq_z0ww4IVferwFEBsAvyYQBMgk5nZL5cthYM260S3xwOtjv1vokDEnbG2e1t8ku1pC0bugTbczYRTa0-6WvE2d964Pujb0mF43eeHtz7DPy-fqyKt7Sxcf8vXhepIZxEVIhIWuYoTVSVfNGACpBa1OpRqlKcIOag6woZpXMUTHLcwsZ1NJyKmnE2YzcH3K3bvgZrQ_lehhdH0-WFDF-xzLIIvVwoIwbvHe2Kbeu7bTblQjl3llZ5MvVn7MiwnfHyLHqbH1C_yWxX7WdZfU</recordid><startdate>20180919</startdate><enddate>20180919</enddate><creator>Ramos-Alonso, Lucía</creator><creator>Wittmaack, Nadine</creator><creator>Mulet, Isabel</creator><creator>Martínez-Garay, Carlos A</creator><creator>Fita-Torró, Josep</creator><creator>Lozano, María Jesús</creator><creator>Romero, Antonia M</creator><creator>García-Ferris, Carlos</creator><creator>Martínez-Pastor, María Teresa</creator><creator>Puig, Sergi</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4549-4078</orcidid><orcidid>https://orcid.org/0000-0002-1828-4115</orcidid><orcidid>https://orcid.org/0000-0002-1856-490X</orcidid><orcidid>https://orcid.org/0000-0002-2727-279X</orcidid><orcidid>https://orcid.org/0000-0002-4128-958X</orcidid></search><sort><creationdate>20180919</creationdate><title>Molecular strategies to increase yeast iron accumulation and resistance</title><author>Ramos-Alonso, Lucía ; Wittmaack, Nadine ; Mulet, Isabel ; Martínez-Garay, Carlos A ; Fita-Torró, Josep ; Lozano, María Jesús ; Romero, Antonia M ; García-Ferris, Carlos ; Martínez-Pastor, María Teresa ; Puig, Sergi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-6704f3c2d129d5f601962dcb9f99b65c1a507b214b78193e58e040d7e5272f603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Activation</topic><topic>Alleles</topic><topic>Anemia</topic><topic>Baking yeast</topic><topic>Biological activity</topic><topic>Clonal deletion</topic><topic>Diet</topic><topic>Dietary supplements</topic><topic>Feed supplements</topic><topic>Gene Expression Regulation, Fungal - genetics</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron deficiency</topic><topic>Macromolecules</topic><topic>Nutrient deficiency</topic><topic>Oxygen consumption</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-binding protein</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sensitivity</topic><topic>Toxicity</topic><topic>Transcription factors</topic><topic>Transcription, Genetic - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos-Alonso, Lucía</creatorcontrib><creatorcontrib>Wittmaack, Nadine</creatorcontrib><creatorcontrib>Mulet, Isabel</creatorcontrib><creatorcontrib>Martínez-Garay, Carlos A</creatorcontrib><creatorcontrib>Fita-Torró, Josep</creatorcontrib><creatorcontrib>Lozano, María Jesús</creatorcontrib><creatorcontrib>Romero, Antonia M</creatorcontrib><creatorcontrib>García-Ferris, Carlos</creatorcontrib><creatorcontrib>Martínez-Pastor, María Teresa</creatorcontrib><creatorcontrib>Puig, Sergi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Metallomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos-Alonso, Lucía</au><au>Wittmaack, Nadine</au><au>Mulet, Isabel</au><au>Martínez-Garay, Carlos A</au><au>Fita-Torró, Josep</au><au>Lozano, María Jesús</au><au>Romero, Antonia M</au><au>García-Ferris, Carlos</au><au>Martínez-Pastor, María Teresa</au><au>Puig, Sergi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular strategies to increase yeast iron accumulation and resistance</atitle><jtitle>Metallomics</jtitle><addtitle>Metallomics</addtitle><date>2018-09-19</date><risdate>2018</risdate><volume>10</volume><issue>9</issue><spage>1245</spage><epage>1256</epage><pages>1245-1256</pages><issn>1756-5901</issn><eissn>1756-591X</eissn><abstract>All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under physiological conditions increases the prevalence of iron deficiency anemia. A common strategy to treat iron deficiency consists of dietary iron supplementation. The baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, but also as a feed supplement. In response to iron deficiency, the yeast Aft1 transcription factor activates cellular iron acquisition. However, when constitutively active, Aft1 inhibits growth probably due to iron toxicity. In this report, we have studied the consequences of using hyperactive AFT1 alleles, including AFT1-1UP, to increase yeast iron accumulation. We first characterized the iron sensitivity of cells expressing different constitutively active AFT1 alleles. We rescued the high iron sensitivity conferred by the AFT1 alleles by deleting the sphingolipid signaling kinase YPK1. We observed that the deletion of YPK1 exerts different effects on iron accumulation depending on the AFT1 allele and the environmental iron. Moreover, we determined that the impairment of the high-affinity iron transport system partially rescues the high iron toxicity of AFT1-1UP-expressing cells. Finally, we observed that AFT1-1UP inhibits oxygen consumption through activation of the RNA-binding protein Cth2. Deletion of CTH2 partially rescues the AFT1-1UP negative respiratory effect. Collectively, these results contribute to understand how the Aft1 transcription factor functions and the multiple consequences derived from its constitutive activation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30137082</pmid><doi>10.1039/c8mt00124c</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4549-4078</orcidid><orcidid>https://orcid.org/0000-0002-1828-4115</orcidid><orcidid>https://orcid.org/0000-0002-1856-490X</orcidid><orcidid>https://orcid.org/0000-0002-2727-279X</orcidid><orcidid>https://orcid.org/0000-0002-4128-958X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1756-5901
ispartof Metallomics, 2018-09, Vol.10 (9), p.1245-1256
issn 1756-5901
1756-591X
language eng
recordid cdi_proquest_journals_2110053404
source MEDLINE; Oxford University Press Journals All Titles (1996-Current)
subjects Accumulation
Activation
Alleles
Anemia
Baking yeast
Biological activity
Clonal deletion
Diet
Dietary supplements
Feed supplements
Gene Expression Regulation, Fungal - genetics
Iron
Iron - metabolism
Iron deficiency
Macromolecules
Nutrient deficiency
Oxygen consumption
Proteins
Reactive oxygen species
Ribonucleic acid
RNA
RNA-binding protein
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Sensitivity
Toxicity
Transcription factors
Transcription, Genetic - genetics
Yeast
title Molecular strategies to increase yeast iron accumulation and resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20strategies%20to%20increase%20yeast%20iron%20accumulation%20and%20resistance&rft.jtitle=Metallomics&rft.au=Ramos-Alonso,%20Luc%C3%ADa&rft.date=2018-09-19&rft.volume=10&rft.issue=9&rft.spage=1245&rft.epage=1256&rft.pages=1245-1256&rft.issn=1756-5901&rft.eissn=1756-591X&rft_id=info:doi/10.1039/c8mt00124c&rft_dat=%3Cproquest_cross%3E2110053404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110053404&rft_id=info:pmid/30137082&rfr_iscdi=true