Molecular strategies to increase yeast iron accumulation and resistance
All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under phy...
Gespeichert in:
Veröffentlicht in: | Metallomics 2018-09, Vol.10 (9), p.1245-1256 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1256 |
---|---|
container_issue | 9 |
container_start_page | 1245 |
container_title | Metallomics |
container_volume | 10 |
creator | Ramos-Alonso, Lucía Wittmaack, Nadine Mulet, Isabel Martínez-Garay, Carlos A Fita-Torró, Josep Lozano, María Jesús Romero, Antonia M García-Ferris, Carlos Martínez-Pastor, María Teresa Puig, Sergi |
description | All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under physiological conditions increases the prevalence of iron deficiency anemia. A common strategy to treat iron deficiency consists of dietary iron supplementation. The baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, but also as a feed supplement. In response to iron deficiency, the yeast Aft1 transcription factor activates cellular iron acquisition. However, when constitutively active, Aft1 inhibits growth probably due to iron toxicity. In this report, we have studied the consequences of using hyperactive AFT1 alleles, including AFT1-1UP, to increase yeast iron accumulation. We first characterized the iron sensitivity of cells expressing different constitutively active AFT1 alleles. We rescued the high iron sensitivity conferred by the AFT1 alleles by deleting the sphingolipid signaling kinase YPK1. We observed that the deletion of YPK1 exerts different effects on iron accumulation depending on the AFT1 allele and the environmental iron. Moreover, we determined that the impairment of the high-affinity iron transport system partially rescues the high iron toxicity of AFT1-1UP-expressing cells. Finally, we observed that AFT1-1UP inhibits oxygen consumption through activation of the RNA-binding protein Cth2. Deletion of CTH2 partially rescues the AFT1-1UP negative respiratory effect. Collectively, these results contribute to understand how the Aft1 transcription factor functions and the multiple consequences derived from its constitutive activation. |
doi_str_mv | 10.1039/c8mt00124c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2110053404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2110053404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-6704f3c2d129d5f601962dcb9f99b65c1a507b214b78193e58e040d7e5272f603</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4Mobk4v_gFS8CZU30uapDlK0SlseJngraRpKh1rO5P0sP_ezM1d3g_48H28DyG3CI8ITD2ZvAsASDNzRqYouUi5wq_z0ww4IVferwFEBsAvyYQBMgk5nZL5cthYM260S3xwOtjv1vokDEnbG2e1t8ku1pC0bugTbczYRTa0-6WvE2d964Pujb0mF43eeHtz7DPy-fqyKt7Sxcf8vXhepIZxEVIhIWuYoTVSVfNGACpBa1OpRqlKcIOag6woZpXMUTHLcwsZ1NJyKmnE2YzcH3K3bvgZrQ_lehhdH0-WFDF-xzLIIvVwoIwbvHe2Kbeu7bTblQjl3llZ5MvVn7MiwnfHyLHqbH1C_yWxX7WdZfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110053404</pqid></control><display><type>article</type><title>Molecular strategies to increase yeast iron accumulation and resistance</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Ramos-Alonso, Lucía ; Wittmaack, Nadine ; Mulet, Isabel ; Martínez-Garay, Carlos A ; Fita-Torró, Josep ; Lozano, María Jesús ; Romero, Antonia M ; García-Ferris, Carlos ; Martínez-Pastor, María Teresa ; Puig, Sergi</creator><creatorcontrib>Ramos-Alonso, Lucía ; Wittmaack, Nadine ; Mulet, Isabel ; Martínez-Garay, Carlos A ; Fita-Torró, Josep ; Lozano, María Jesús ; Romero, Antonia M ; García-Ferris, Carlos ; Martínez-Pastor, María Teresa ; Puig, Sergi</creatorcontrib><description>All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under physiological conditions increases the prevalence of iron deficiency anemia. A common strategy to treat iron deficiency consists of dietary iron supplementation. The baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, but also as a feed supplement. In response to iron deficiency, the yeast Aft1 transcription factor activates cellular iron acquisition. However, when constitutively active, Aft1 inhibits growth probably due to iron toxicity. In this report, we have studied the consequences of using hyperactive AFT1 alleles, including AFT1-1UP, to increase yeast iron accumulation. We first characterized the iron sensitivity of cells expressing different constitutively active AFT1 alleles. We rescued the high iron sensitivity conferred by the AFT1 alleles by deleting the sphingolipid signaling kinase YPK1. We observed that the deletion of YPK1 exerts different effects on iron accumulation depending on the AFT1 allele and the environmental iron. Moreover, we determined that the impairment of the high-affinity iron transport system partially rescues the high iron toxicity of AFT1-1UP-expressing cells. Finally, we observed that AFT1-1UP inhibits oxygen consumption through activation of the RNA-binding protein Cth2. Deletion of CTH2 partially rescues the AFT1-1UP negative respiratory effect. Collectively, these results contribute to understand how the Aft1 transcription factor functions and the multiple consequences derived from its constitutive activation.</description><identifier>ISSN: 1756-5901</identifier><identifier>EISSN: 1756-591X</identifier><identifier>DOI: 10.1039/c8mt00124c</identifier><identifier>PMID: 30137082</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Accumulation ; Activation ; Alleles ; Anemia ; Baking yeast ; Biological activity ; Clonal deletion ; Diet ; Dietary supplements ; Feed supplements ; Gene Expression Regulation, Fungal - genetics ; Iron ; Iron - metabolism ; Iron deficiency ; Macromolecules ; Nutrient deficiency ; Oxygen consumption ; Proteins ; Reactive oxygen species ; Ribonucleic acid ; RNA ; RNA-binding protein ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Sensitivity ; Toxicity ; Transcription factors ; Transcription, Genetic - genetics ; Yeast</subject><ispartof>Metallomics, 2018-09, Vol.10 (9), p.1245-1256</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-6704f3c2d129d5f601962dcb9f99b65c1a507b214b78193e58e040d7e5272f603</citedby><cites>FETCH-LOGICAL-c356t-6704f3c2d129d5f601962dcb9f99b65c1a507b214b78193e58e040d7e5272f603</cites><orcidid>0000-0003-4549-4078 ; 0000-0002-1828-4115 ; 0000-0002-1856-490X ; 0000-0002-2727-279X ; 0000-0002-4128-958X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30137082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramos-Alonso, Lucía</creatorcontrib><creatorcontrib>Wittmaack, Nadine</creatorcontrib><creatorcontrib>Mulet, Isabel</creatorcontrib><creatorcontrib>Martínez-Garay, Carlos A</creatorcontrib><creatorcontrib>Fita-Torró, Josep</creatorcontrib><creatorcontrib>Lozano, María Jesús</creatorcontrib><creatorcontrib>Romero, Antonia M</creatorcontrib><creatorcontrib>García-Ferris, Carlos</creatorcontrib><creatorcontrib>Martínez-Pastor, María Teresa</creatorcontrib><creatorcontrib>Puig, Sergi</creatorcontrib><title>Molecular strategies to increase yeast iron accumulation and resistance</title><title>Metallomics</title><addtitle>Metallomics</addtitle><description>All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under physiological conditions increases the prevalence of iron deficiency anemia. A common strategy to treat iron deficiency consists of dietary iron supplementation. The baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, but also as a feed supplement. In response to iron deficiency, the yeast Aft1 transcription factor activates cellular iron acquisition. However, when constitutively active, Aft1 inhibits growth probably due to iron toxicity. In this report, we have studied the consequences of using hyperactive AFT1 alleles, including AFT1-1UP, to increase yeast iron accumulation. We first characterized the iron sensitivity of cells expressing different constitutively active AFT1 alleles. We rescued the high iron sensitivity conferred by the AFT1 alleles by deleting the sphingolipid signaling kinase YPK1. We observed that the deletion of YPK1 exerts different effects on iron accumulation depending on the AFT1 allele and the environmental iron. Moreover, we determined that the impairment of the high-affinity iron transport system partially rescues the high iron toxicity of AFT1-1UP-expressing cells. Finally, we observed that AFT1-1UP inhibits oxygen consumption through activation of the RNA-binding protein Cth2. Deletion of CTH2 partially rescues the AFT1-1UP negative respiratory effect. Collectively, these results contribute to understand how the Aft1 transcription factor functions and the multiple consequences derived from its constitutive activation.</description><subject>Accumulation</subject><subject>Activation</subject><subject>Alleles</subject><subject>Anemia</subject><subject>Baking yeast</subject><subject>Biological activity</subject><subject>Clonal deletion</subject><subject>Diet</subject><subject>Dietary supplements</subject><subject>Feed supplements</subject><subject>Gene Expression Regulation, Fungal - genetics</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Iron deficiency</subject><subject>Macromolecules</subject><subject>Nutrient deficiency</subject><subject>Oxygen consumption</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-binding protein</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sensitivity</subject><subject>Toxicity</subject><subject>Transcription factors</subject><subject>Transcription, Genetic - genetics</subject><subject>Yeast</subject><issn>1756-5901</issn><issn>1756-591X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kM9LwzAUx4Mobk4v_gFS8CZU30uapDlK0SlseJngraRpKh1rO5P0sP_ezM1d3g_48H28DyG3CI8ITD2ZvAsASDNzRqYouUi5wq_z0ww4IVferwFEBsAvyYQBMgk5nZL5cthYM260S3xwOtjv1vokDEnbG2e1t8ku1pC0bugTbczYRTa0-6WvE2d964Pujb0mF43eeHtz7DPy-fqyKt7Sxcf8vXhepIZxEVIhIWuYoTVSVfNGACpBa1OpRqlKcIOag6woZpXMUTHLcwsZ1NJyKmnE2YzcH3K3bvgZrQ_lehhdH0-WFDF-xzLIIvVwoIwbvHe2Kbeu7bTblQjl3llZ5MvVn7MiwnfHyLHqbH1C_yWxX7WdZfU</recordid><startdate>20180919</startdate><enddate>20180919</enddate><creator>Ramos-Alonso, Lucía</creator><creator>Wittmaack, Nadine</creator><creator>Mulet, Isabel</creator><creator>Martínez-Garay, Carlos A</creator><creator>Fita-Torró, Josep</creator><creator>Lozano, María Jesús</creator><creator>Romero, Antonia M</creator><creator>García-Ferris, Carlos</creator><creator>Martínez-Pastor, María Teresa</creator><creator>Puig, Sergi</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4549-4078</orcidid><orcidid>https://orcid.org/0000-0002-1828-4115</orcidid><orcidid>https://orcid.org/0000-0002-1856-490X</orcidid><orcidid>https://orcid.org/0000-0002-2727-279X</orcidid><orcidid>https://orcid.org/0000-0002-4128-958X</orcidid></search><sort><creationdate>20180919</creationdate><title>Molecular strategies to increase yeast iron accumulation and resistance</title><author>Ramos-Alonso, Lucía ; Wittmaack, Nadine ; Mulet, Isabel ; Martínez-Garay, Carlos A ; Fita-Torró, Josep ; Lozano, María Jesús ; Romero, Antonia M ; García-Ferris, Carlos ; Martínez-Pastor, María Teresa ; Puig, Sergi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-6704f3c2d129d5f601962dcb9f99b65c1a507b214b78193e58e040d7e5272f603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Activation</topic><topic>Alleles</topic><topic>Anemia</topic><topic>Baking yeast</topic><topic>Biological activity</topic><topic>Clonal deletion</topic><topic>Diet</topic><topic>Dietary supplements</topic><topic>Feed supplements</topic><topic>Gene Expression Regulation, Fungal - genetics</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Iron deficiency</topic><topic>Macromolecules</topic><topic>Nutrient deficiency</topic><topic>Oxygen consumption</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-binding protein</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sensitivity</topic><topic>Toxicity</topic><topic>Transcription factors</topic><topic>Transcription, Genetic - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos-Alonso, Lucía</creatorcontrib><creatorcontrib>Wittmaack, Nadine</creatorcontrib><creatorcontrib>Mulet, Isabel</creatorcontrib><creatorcontrib>Martínez-Garay, Carlos A</creatorcontrib><creatorcontrib>Fita-Torró, Josep</creatorcontrib><creatorcontrib>Lozano, María Jesús</creatorcontrib><creatorcontrib>Romero, Antonia M</creatorcontrib><creatorcontrib>García-Ferris, Carlos</creatorcontrib><creatorcontrib>Martínez-Pastor, María Teresa</creatorcontrib><creatorcontrib>Puig, Sergi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Metallomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos-Alonso, Lucía</au><au>Wittmaack, Nadine</au><au>Mulet, Isabel</au><au>Martínez-Garay, Carlos A</au><au>Fita-Torró, Josep</au><au>Lozano, María Jesús</au><au>Romero, Antonia M</au><au>García-Ferris, Carlos</au><au>Martínez-Pastor, María Teresa</au><au>Puig, Sergi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular strategies to increase yeast iron accumulation and resistance</atitle><jtitle>Metallomics</jtitle><addtitle>Metallomics</addtitle><date>2018-09-19</date><risdate>2018</risdate><volume>10</volume><issue>9</issue><spage>1245</spage><epage>1256</epage><pages>1245-1256</pages><issn>1756-5901</issn><eissn>1756-591X</eissn><abstract>All eukaryotic organisms rely on iron as an essential micronutrient for life because it participates as a redox-active cofactor in multiple biological processes. However, excess iron can generate reactive oxygen species that damage cellular macromolecules. The low solubility of ferric iron under physiological conditions increases the prevalence of iron deficiency anemia. A common strategy to treat iron deficiency consists of dietary iron supplementation. The baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, but also as a feed supplement. In response to iron deficiency, the yeast Aft1 transcription factor activates cellular iron acquisition. However, when constitutively active, Aft1 inhibits growth probably due to iron toxicity. In this report, we have studied the consequences of using hyperactive AFT1 alleles, including AFT1-1UP, to increase yeast iron accumulation. We first characterized the iron sensitivity of cells expressing different constitutively active AFT1 alleles. We rescued the high iron sensitivity conferred by the AFT1 alleles by deleting the sphingolipid signaling kinase YPK1. We observed that the deletion of YPK1 exerts different effects on iron accumulation depending on the AFT1 allele and the environmental iron. Moreover, we determined that the impairment of the high-affinity iron transport system partially rescues the high iron toxicity of AFT1-1UP-expressing cells. Finally, we observed that AFT1-1UP inhibits oxygen consumption through activation of the RNA-binding protein Cth2. Deletion of CTH2 partially rescues the AFT1-1UP negative respiratory effect. Collectively, these results contribute to understand how the Aft1 transcription factor functions and the multiple consequences derived from its constitutive activation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30137082</pmid><doi>10.1039/c8mt00124c</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4549-4078</orcidid><orcidid>https://orcid.org/0000-0002-1828-4115</orcidid><orcidid>https://orcid.org/0000-0002-1856-490X</orcidid><orcidid>https://orcid.org/0000-0002-2727-279X</orcidid><orcidid>https://orcid.org/0000-0002-4128-958X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-5901 |
ispartof | Metallomics, 2018-09, Vol.10 (9), p.1245-1256 |
issn | 1756-5901 1756-591X |
language | eng |
recordid | cdi_proquest_journals_2110053404 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current) |
subjects | Accumulation Activation Alleles Anemia Baking yeast Biological activity Clonal deletion Diet Dietary supplements Feed supplements Gene Expression Regulation, Fungal - genetics Iron Iron - metabolism Iron deficiency Macromolecules Nutrient deficiency Oxygen consumption Proteins Reactive oxygen species Ribonucleic acid RNA RNA-binding protein Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Sensitivity Toxicity Transcription factors Transcription, Genetic - genetics Yeast |
title | Molecular strategies to increase yeast iron accumulation and resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20strategies%20to%20increase%20yeast%20iron%20accumulation%20and%20resistance&rft.jtitle=Metallomics&rft.au=Ramos-Alonso,%20Luc%C3%ADa&rft.date=2018-09-19&rft.volume=10&rft.issue=9&rft.spage=1245&rft.epage=1256&rft.pages=1245-1256&rft.issn=1756-5901&rft.eissn=1756-591X&rft_id=info:doi/10.1039/c8mt00124c&rft_dat=%3Cproquest_cross%3E2110053404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110053404&rft_id=info:pmid/30137082&rfr_iscdi=true |