A Trainable System for Underwater Pipe Detection
Underwater image processing is widely increased over the last decade. It is a fundamental process for a most part of underwater research applications, because of the need of data acquisition. In this paper we will propose a novel approach of pipe detection in submarine environment. The system draws...
Gespeichert in:
Veröffentlicht in: | Pattern recognition and image analysis 2018-07, Vol.28 (3), p.525-536 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 536 |
---|---|
container_issue | 3 |
container_start_page | 525 |
container_title | Pattern recognition and image analysis |
container_volume | 28 |
creator | Rekik, F. Ayedi, W. Jallouli, M. |
description | Underwater image processing is widely increased over the last decade. It is a fundamental process for a most part of underwater research applications, because of the need of data acquisition. In this paper we will propose a novel approach of pipe detection in submarine environment. The system draws much of its power from a representation that describes an object class taking into account structure and content features which are computed through the multi-scale covariance descriptor. This approach describes an object detection model by training a support vector machine classifier using a large set of positive and negative samples. We present result on pipe detection using Maris dataset. Moreover, we show how the representation affects detection performance by considering mono-scale representation using Covariance descr
iptor
. |
doi_str_mv | 10.1134/S1054661818030185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2109121667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2109121667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2315-2ce3cda8eb7f30b23dd277455e7237df56b20337e08cd547007510ed060bc4be3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9GZ3eyfHkvVKhQU2p7DZnciKW1Sd1Ok396UCB7E0zx47_cGHmO3CPeIMn9YIqhca7RoQQJadcZGqJTKtEBx3uvezk7-JbtKaQMAFidixGDKV9HVjSu3xJfH1NGOV23k6yZQ_HIdRf5e74k_Uke-q9vmml1Ubpvo5ueO2fr5aTV7yRZv89fZdJF5IVFlwpP0wVkqTSWhFDIEYUyuFBkhTaiULgVIaQisDyo3AEYhUAANpc9LkmN2N_TuY_t5oNQVm_YQm_5lIRAmKFBr06dwSPnYphSpKvax3rl4LBCK0zDFn2F6RgxM6rPNB8Xf5v-hb8soYjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2109121667</pqid></control><display><type>article</type><title>A Trainable System for Underwater Pipe Detection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rekik, F. ; Ayedi, W. ; Jallouli, M.</creator><creatorcontrib>Rekik, F. ; Ayedi, W. ; Jallouli, M.</creatorcontrib><description>Underwater image processing is widely increased over the last decade. It is a fundamental process for a most part of underwater research applications, because of the need of data acquisition. In this paper we will propose a novel approach of pipe detection in submarine environment. The system draws much of its power from a representation that describes an object class taking into account structure and content features which are computed through the multi-scale covariance descriptor. This approach describes an object detection model by training a support vector machine classifier using a large set of positive and negative samples. We present result on pipe detection using Maris dataset. Moreover, we show how the representation affects detection performance by considering mono-scale representation using Covariance descr
iptor
.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661818030185</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applied Problems ; Computer Science ; Covariance ; Image detection ; Image processing ; Image Processing and Computer Vision ; Object recognition ; Pattern Recognition ; Pipes ; Representations ; Support vector machines ; Underwater</subject><ispartof>Pattern recognition and image analysis, 2018-07, Vol.28 (3), p.525-536</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Pattern Recognition and Image Analysis is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2315-2ce3cda8eb7f30b23dd277455e7237df56b20337e08cd547007510ed060bc4be3</citedby><cites>FETCH-LOGICAL-c2315-2ce3cda8eb7f30b23dd277455e7237df56b20337e08cd547007510ed060bc4be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661818030185$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661818030185$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rekik, F.</creatorcontrib><creatorcontrib>Ayedi, W.</creatorcontrib><creatorcontrib>Jallouli, M.</creatorcontrib><title>A Trainable System for Underwater Pipe Detection</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>Underwater image processing is widely increased over the last decade. It is a fundamental process for a most part of underwater research applications, because of the need of data acquisition. In this paper we will propose a novel approach of pipe detection in submarine environment. The system draws much of its power from a representation that describes an object class taking into account structure and content features which are computed through the multi-scale covariance descriptor. This approach describes an object detection model by training a support vector machine classifier using a large set of positive and negative samples. We present result on pipe detection using Maris dataset. Moreover, we show how the representation affects detection performance by considering mono-scale representation using Covariance descr
iptor
.</description><subject>Applied Problems</subject><subject>Computer Science</subject><subject>Covariance</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Object recognition</subject><subject>Pattern Recognition</subject><subject>Pipes</subject><subject>Representations</subject><subject>Support vector machines</subject><subject>Underwater</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9GZ3eyfHkvVKhQU2p7DZnciKW1Sd1Ok396UCB7E0zx47_cGHmO3CPeIMn9YIqhca7RoQQJadcZGqJTKtEBx3uvezk7-JbtKaQMAFidixGDKV9HVjSu3xJfH1NGOV23k6yZQ_HIdRf5e74k_Uke-q9vmml1Ubpvo5ueO2fr5aTV7yRZv89fZdJF5IVFlwpP0wVkqTSWhFDIEYUyuFBkhTaiULgVIaQisDyo3AEYhUAANpc9LkmN2N_TuY_t5oNQVm_YQm_5lIRAmKFBr06dwSPnYphSpKvax3rl4LBCK0zDFn2F6RgxM6rPNB8Xf5v-hb8soYjg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Rekik, F.</creator><creator>Ayedi, W.</creator><creator>Jallouli, M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20180701</creationdate><title>A Trainable System for Underwater Pipe Detection</title><author>Rekik, F. ; Ayedi, W. ; Jallouli, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2315-2ce3cda8eb7f30b23dd277455e7237df56b20337e08cd547007510ed060bc4be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied Problems</topic><topic>Computer Science</topic><topic>Covariance</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Object recognition</topic><topic>Pattern Recognition</topic><topic>Pipes</topic><topic>Representations</topic><topic>Support vector machines</topic><topic>Underwater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rekik, F.</creatorcontrib><creatorcontrib>Ayedi, W.</creatorcontrib><creatorcontrib>Jallouli, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rekik, F.</au><au>Ayedi, W.</au><au>Jallouli, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Trainable System for Underwater Pipe Detection</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>525</spage><epage>536</epage><pages>525-536</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>Underwater image processing is widely increased over the last decade. It is a fundamental process for a most part of underwater research applications, because of the need of data acquisition. In this paper we will propose a novel approach of pipe detection in submarine environment. The system draws much of its power from a representation that describes an object class taking into account structure and content features which are computed through the multi-scale covariance descriptor. This approach describes an object detection model by training a support vector machine classifier using a large set of positive and negative samples. We present result on pipe detection using Maris dataset. Moreover, we show how the representation affects detection performance by considering mono-scale representation using Covariance descr
iptor
.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1054661818030185</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-6618 |
ispartof | Pattern recognition and image analysis, 2018-07, Vol.28 (3), p.525-536 |
issn | 1054-6618 1555-6212 |
language | eng |
recordid | cdi_proquest_journals_2109121667 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied Problems Computer Science Covariance Image detection Image processing Image Processing and Computer Vision Object recognition Pattern Recognition Pipes Representations Support vector machines Underwater |
title | A Trainable System for Underwater Pipe Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Trainable%20System%20for%20Underwater%20Pipe%20Detection&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Rekik,%20F.&rft.date=2018-07-01&rft.volume=28&rft.issue=3&rft.spage=525&rft.epage=536&rft.pages=525-536&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661818030185&rft_dat=%3Cproquest_cross%3E2109121667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2109121667&rft_id=info:pmid/&rfr_iscdi=true |