Surfactant-free synthesis of monodisperse cobalt oxide nanoparticles of tunable size and oxidation state developed by factorial design
A surfactant-free synthesis of highly monodisperse Co3O4 nanoparticles via a sol-gel route was scaled-up in order to yield up to one gram of nanoparticles with a narrow size distribution. Parameters allowing for an accurate control of the crystallite size were identified and systematically evaluated...
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2018-07, Vol.213, p.305-312 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 312 |
---|---|
container_issue | |
container_start_page | 305 |
container_title | Materials chemistry and physics |
container_volume | 213 |
creator | Wolf, Moritz Fischer, Nico Claeys, Michael |
description | A surfactant-free synthesis of highly monodisperse Co3O4 nanoparticles via a sol-gel route was scaled-up in order to yield up to one gram of nanoparticles with a narrow size distribution. Parameters allowing for an accurate control of the crystallite size were identified and systematically evaluated. Application of Taguchi's method for experimental design revealed an increase in crystallite size with increasing synthesis temperature or concentration of the cobalt precursor. However, the amount of additive NH4OH(aq), respectively the associated water, has the most pronounced effect on the resulting crystallite size. Water was identified as the main source of oxygen and is required to yield single-phase Co3O4 nanoparticles. An ideal mixing of the reaction mixture is crucial for the availability of water during the synthesis. The outcome allows for the controlled synthesis of monodisperse, single-phase Co3O4 nanoparticles in the range of 2.8 to 9.8 nm with relative standard deviations ranging from 13 to 19%. Further, conducting the synthesis in the absence of water yields monodisperse, single-phase, and highly crystalline CoO nanoparticles.
[Display omitted]
•Synthesis of monodisperse, single-phase CoO and Co3O4 nanoparticles.•Size controlled synthesis of monodisperse Co3O4 nanoparticles below 10 nm.•Application of Taguchi’s method as experimental design to evaluate size control.•One-pot synthesis of up to one gram of well-defined nanoparticles.•Synthesised nanoparticles are highly crystalline and dispersible in ethanol. |
doi_str_mv | 10.1016/j.matchemphys.2018.04.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2108867258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058418302839</els_id><sourcerecordid>2108867258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b37cb35984b609bece0d417a70b6340120a5520025170f3e6279f99efd84546d3</originalsourceid><addsrcrecordid>eNqNkMtqGzEUhkVoIK6Td1DJeqZHl7ktg2mbQiCLtGuhkc7EGsbSVJJD3QfIc2dsZ5FlVwcO_4X_I-QLg5IBq7-O5U5ns8XdvD2kkgNrS5AlcHZBVqxtukIIxj-RFfBKFlC18op8TmkEYA1jYkVen_Zx0CZrn4shItJ08HmLySUaBroLPliXZowJqQm9njINf51F6rUPs47ZmQlP0rz3up8Wv_uHVHt70unsgqcp64zU4gtOYUZL-wM9Vobo9LS8k3v21-Ry0FPCm_e7Jr-_f_u1uS8eHn_83Nw9FEbILhe9aEwvqq6VfQ1djwbBStboBvpaSGAcdFVxWMayBgaBNW-6oetwsK2sZG3Fmtyec-cY_uwxZTWGffRLpeIM2rZueNUuqu6sMjGkFHFQc3Q7HQ-KgTpiV6P6gF0dsSuQasG-eDdnLy4zXhxGlYxDb9C6iCYrG9x_pLwB86eUhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108867258</pqid></control><display><type>article</type><title>Surfactant-free synthesis of monodisperse cobalt oxide nanoparticles of tunable size and oxidation state developed by factorial design</title><source>Elsevier ScienceDirect Journals</source><creator>Wolf, Moritz ; Fischer, Nico ; Claeys, Michael</creator><creatorcontrib>Wolf, Moritz ; Fischer, Nico ; Claeys, Michael</creatorcontrib><description>A surfactant-free synthesis of highly monodisperse Co3O4 nanoparticles via a sol-gel route was scaled-up in order to yield up to one gram of nanoparticles with a narrow size distribution. Parameters allowing for an accurate control of the crystallite size were identified and systematically evaluated. Application of Taguchi's method for experimental design revealed an increase in crystallite size with increasing synthesis temperature or concentration of the cobalt precursor. However, the amount of additive NH4OH(aq), respectively the associated water, has the most pronounced effect on the resulting crystallite size. Water was identified as the main source of oxygen and is required to yield single-phase Co3O4 nanoparticles. An ideal mixing of the reaction mixture is crucial for the availability of water during the synthesis. The outcome allows for the controlled synthesis of monodisperse, single-phase Co3O4 nanoparticles in the range of 2.8 to 9.8 nm with relative standard deviations ranging from 13 to 19%. Further, conducting the synthesis in the absence of water yields monodisperse, single-phase, and highly crystalline CoO nanoparticles.
[Display omitted]
•Synthesis of monodisperse, single-phase CoO and Co3O4 nanoparticles.•Size controlled synthesis of monodisperse Co3O4 nanoparticles below 10 nm.•Application of Taguchi’s method as experimental design to evaluate size control.•One-pot synthesis of up to one gram of well-defined nanoparticles.•Synthesised nanoparticles are highly crystalline and dispersible in ethanol.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2018.04.021</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Ammonium hydroxide ; Chemical synthesis ; Cobalt oxide ; Cobalt oxides ; Crystals ; Design of experiments ; Experimental design ; Factorial design ; Monodisperse ; Nanoparticles ; Oxidation ; Oxygen ; Parameter identification ; Size control ; Size distribution ; Sol-gel ; Sol-gel processes ; Surfactants ; Taguchi methods ; Valence</subject><ispartof>Materials chemistry and physics, 2018-07, Vol.213, p.305-312</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b37cb35984b609bece0d417a70b6340120a5520025170f3e6279f99efd84546d3</citedby><cites>FETCH-LOGICAL-c349t-b37cb35984b609bece0d417a70b6340120a5520025170f3e6279f99efd84546d3</cites><orcidid>0000-0002-1326-5337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0254058418302839$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Wolf, Moritz</creatorcontrib><creatorcontrib>Fischer, Nico</creatorcontrib><creatorcontrib>Claeys, Michael</creatorcontrib><title>Surfactant-free synthesis of monodisperse cobalt oxide nanoparticles of tunable size and oxidation state developed by factorial design</title><title>Materials chemistry and physics</title><description>A surfactant-free synthesis of highly monodisperse Co3O4 nanoparticles via a sol-gel route was scaled-up in order to yield up to one gram of nanoparticles with a narrow size distribution. Parameters allowing for an accurate control of the crystallite size were identified and systematically evaluated. Application of Taguchi's method for experimental design revealed an increase in crystallite size with increasing synthesis temperature or concentration of the cobalt precursor. However, the amount of additive NH4OH(aq), respectively the associated water, has the most pronounced effect on the resulting crystallite size. Water was identified as the main source of oxygen and is required to yield single-phase Co3O4 nanoparticles. An ideal mixing of the reaction mixture is crucial for the availability of water during the synthesis. The outcome allows for the controlled synthesis of monodisperse, single-phase Co3O4 nanoparticles in the range of 2.8 to 9.8 nm with relative standard deviations ranging from 13 to 19%. Further, conducting the synthesis in the absence of water yields monodisperse, single-phase, and highly crystalline CoO nanoparticles.
[Display omitted]
•Synthesis of monodisperse, single-phase CoO and Co3O4 nanoparticles.•Size controlled synthesis of monodisperse Co3O4 nanoparticles below 10 nm.•Application of Taguchi’s method as experimental design to evaluate size control.•One-pot synthesis of up to one gram of well-defined nanoparticles.•Synthesised nanoparticles are highly crystalline and dispersible in ethanol.</description><subject>Ammonium hydroxide</subject><subject>Chemical synthesis</subject><subject>Cobalt oxide</subject><subject>Cobalt oxides</subject><subject>Crystals</subject><subject>Design of experiments</subject><subject>Experimental design</subject><subject>Factorial design</subject><subject>Monodisperse</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Parameter identification</subject><subject>Size control</subject><subject>Size distribution</subject><subject>Sol-gel</subject><subject>Sol-gel processes</subject><subject>Surfactants</subject><subject>Taguchi methods</subject><subject>Valence</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkMtqGzEUhkVoIK6Td1DJeqZHl7ktg2mbQiCLtGuhkc7EGsbSVJJD3QfIc2dsZ5FlVwcO_4X_I-QLg5IBq7-O5U5ns8XdvD2kkgNrS5AlcHZBVqxtukIIxj-RFfBKFlC18op8TmkEYA1jYkVen_Zx0CZrn4shItJ08HmLySUaBroLPliXZowJqQm9njINf51F6rUPs47ZmQlP0rz3up8Wv_uHVHt70unsgqcp64zU4gtOYUZL-wM9Vobo9LS8k3v21-Ry0FPCm_e7Jr-_f_u1uS8eHn_83Nw9FEbILhe9aEwvqq6VfQ1djwbBStboBvpaSGAcdFVxWMayBgaBNW-6oetwsK2sZG3Fmtyec-cY_uwxZTWGffRLpeIM2rZueNUuqu6sMjGkFHFQc3Q7HQ-KgTpiV6P6gF0dsSuQasG-eDdnLy4zXhxGlYxDb9C6iCYrG9x_pLwB86eUhA</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Wolf, Moritz</creator><creator>Fischer, Nico</creator><creator>Claeys, Michael</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1326-5337</orcidid></search><sort><creationdate>20180701</creationdate><title>Surfactant-free synthesis of monodisperse cobalt oxide nanoparticles of tunable size and oxidation state developed by factorial design</title><author>Wolf, Moritz ; Fischer, Nico ; Claeys, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b37cb35984b609bece0d417a70b6340120a5520025170f3e6279f99efd84546d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ammonium hydroxide</topic><topic>Chemical synthesis</topic><topic>Cobalt oxide</topic><topic>Cobalt oxides</topic><topic>Crystals</topic><topic>Design of experiments</topic><topic>Experimental design</topic><topic>Factorial design</topic><topic>Monodisperse</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Parameter identification</topic><topic>Size control</topic><topic>Size distribution</topic><topic>Sol-gel</topic><topic>Sol-gel processes</topic><topic>Surfactants</topic><topic>Taguchi methods</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Moritz</creatorcontrib><creatorcontrib>Fischer, Nico</creatorcontrib><creatorcontrib>Claeys, Michael</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Moritz</au><au>Fischer, Nico</au><au>Claeys, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surfactant-free synthesis of monodisperse cobalt oxide nanoparticles of tunable size and oxidation state developed by factorial design</atitle><jtitle>Materials chemistry and physics</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>213</volume><spage>305</spage><epage>312</epage><pages>305-312</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>A surfactant-free synthesis of highly monodisperse Co3O4 nanoparticles via a sol-gel route was scaled-up in order to yield up to one gram of nanoparticles with a narrow size distribution. Parameters allowing for an accurate control of the crystallite size were identified and systematically evaluated. Application of Taguchi's method for experimental design revealed an increase in crystallite size with increasing synthesis temperature or concentration of the cobalt precursor. However, the amount of additive NH4OH(aq), respectively the associated water, has the most pronounced effect on the resulting crystallite size. Water was identified as the main source of oxygen and is required to yield single-phase Co3O4 nanoparticles. An ideal mixing of the reaction mixture is crucial for the availability of water during the synthesis. The outcome allows for the controlled synthesis of monodisperse, single-phase Co3O4 nanoparticles in the range of 2.8 to 9.8 nm with relative standard deviations ranging from 13 to 19%. Further, conducting the synthesis in the absence of water yields monodisperse, single-phase, and highly crystalline CoO nanoparticles.
[Display omitted]
•Synthesis of monodisperse, single-phase CoO and Co3O4 nanoparticles.•Size controlled synthesis of monodisperse Co3O4 nanoparticles below 10 nm.•Application of Taguchi’s method as experimental design to evaluate size control.•One-pot synthesis of up to one gram of well-defined nanoparticles.•Synthesised nanoparticles are highly crystalline and dispersible in ethanol.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2018.04.021</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1326-5337</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-0584 |
ispartof | Materials chemistry and physics, 2018-07, Vol.213, p.305-312 |
issn | 0254-0584 1879-3312 |
language | eng |
recordid | cdi_proquest_journals_2108867258 |
source | Elsevier ScienceDirect Journals |
subjects | Ammonium hydroxide Chemical synthesis Cobalt oxide Cobalt oxides Crystals Design of experiments Experimental design Factorial design Monodisperse Nanoparticles Oxidation Oxygen Parameter identification Size control Size distribution Sol-gel Sol-gel processes Surfactants Taguchi methods Valence |
title | Surfactant-free synthesis of monodisperse cobalt oxide nanoparticles of tunable size and oxidation state developed by factorial design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surfactant-free%20synthesis%20of%20monodisperse%20cobalt%20oxide%20nanoparticles%20of%20tunable%20size%20and%20oxidation%20state%20developed%20by%20factorial%20design&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Wolf,%20Moritz&rft.date=2018-07-01&rft.volume=213&rft.spage=305&rft.epage=312&rft.pages=305-312&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2018.04.021&rft_dat=%3Cproquest_cross%3E2108867258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108867258&rft_id=info:pmid/&rft_els_id=S0254058418302839&rfr_iscdi=true |