Exploration of Sulfur‐Containing Analogues for Imaging Vesicular Acetylcholine Transporter in the Brain

Sixteen new sulfur‐containing compounds targeting the vesicular acetylcholine transporter (VAChT) were synthesized and assessed for in vitro binding affinities. Enantiomers (−)‐(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaphthalen‐2‐yl)piperidin‐4‐yl)(4‐(methylthio)phenyl)methanone [(−)‐8] and (−)‐(4‐((2‐fluor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemMedChem 2018-09, Vol.13 (18), p.1978-1987
Hauptverfasser: Luo, Zonghua, Liu, Hui, Jin, Hongjun, Gu, Jiwei, Yu, Yanbo, Kaneshige, Kota, Perlmutter, Joel S., Parsons, Stanley M., Tu, Zhude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1987
container_issue 18
container_start_page 1978
container_title ChemMedChem
container_volume 13
creator Luo, Zonghua
Liu, Hui
Jin, Hongjun
Gu, Jiwei
Yu, Yanbo
Kaneshige, Kota
Perlmutter, Joel S.
Parsons, Stanley M.
Tu, Zhude
description Sixteen new sulfur‐containing compounds targeting the vesicular acetylcholine transporter (VAChT) were synthesized and assessed for in vitro binding affinities. Enantiomers (−)‐(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaphthalen‐2‐yl)piperidin‐4‐yl)(4‐(methylthio)phenyl)methanone [(−)‐8] and (−)‐(4‐((2‐fluoroethyl)thio)phenyl)(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaph‐thalen‐2‐yl)piperidin‐4‐yl)methanone [(−)‐14 a] displayed high binding affinities, with respective Ki values of 1.4 and 2.2 nm for human VAChT, moderate and high selectivity for human VAChT over σ1 (≈13‐fold) and σ2 receptors (>420‐fold). Radiosyntheses of (−)‐[11C]8 and (−)‐[18F]14 a were achieved using conventional methods. Ex vivo autoradiography and biodistribution studies in Sprague–Dawley rats indicated that both radiotracers have the capacity to penetrate the blood–brain barrier, with high initial brain uptake at 5 min and rapid washout. The striatal region had the highest accumulation for both radiotracers. Pretreating the rats with the VAChT ligand (−)‐vesamicol decreased brain uptake for both radiotracers. Pretreating the rats with the σ1 ligand YUN‐122 (N‐(4‐benzylcyclohexyl)‐2‐(2‐fluorophenyl)acetamide) also decreased brain uptake, suggesting these two radiotracers also bind to the σ1 receptor in vivo. The microPET study of (−)‐[11C]8 in the brain of a non‐human primate showed high striatal accumulation that peaked quickly and washed out rapidly. Although preliminary results indicated these two sulfur‐containing radiotracers have high binding affinities for VAChT with rapid washout kinetics from the striatum, their σ1 receptor binding properties limit their potential as radiotracers for quantifying VAChT in vivo. Let's image: New sulfur‐containing analogues have high potency for the vesicular acetylcholine transporter (VAChT). The radiosyntheses of two lead radiotracers are straightforward and effective. Rodent studies demonstrated the tracers can enter the brain with high accumulation in the striatum. PET studies indicated the lead 11C tracer has rapid washout kinetics from the macaque brain. Although moderate σ1 receptor binding affinity limited the in vivo mapping of VAChT, structure–activity relationship data may provide information for future explorations of new VAChT radioligands.
doi_str_mv 10.1002/cmdc.201800411
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2108849649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2108849649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4131-a7a5338026395401866bfb2e2096b860878f9cd10692d10930dbcea9009c63f83</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EolBYGZEl5pTnJE3ssYQClYoYKKyR49itqyQudiLoxifwjXwJrlrKyGJbT8dH716ELggMCEB4LepSDEIgFCAm5ACdEJpAkBKaHu7fKeuhU-eWHokpoceoFwGkhETkBOnxx6oylrfaNNgo_NxVqrPfn1-ZaVquG93M8ajhlZl30mFlLJ7UfL6ZvkqnRVdxi0dCtutKLEylG4lnljduZWwrLdYNbhcS31hvOkNHildOnu_uPnq5G8-yh2D6dD_JRtNAxH6jgKd8GEUUwiRiw9gHS5JCFaEMgSWFz0NTqpgoCSQs9CeLoCyE5AyAiSRSNOqjq613Zc2bX7rNl6azPoLLQwKUxiyJmacGW0pY45yVKl9ZXXO7zgnkm2bzTbP5vln_4XKn7Ypalnv8t0oPsC3wriu5_keXZ4-32Z_8B5PhhZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108849649</pqid></control><display><type>article</type><title>Exploration of Sulfur‐Containing Analogues for Imaging Vesicular Acetylcholine Transporter in the Brain</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Luo, Zonghua ; Liu, Hui ; Jin, Hongjun ; Gu, Jiwei ; Yu, Yanbo ; Kaneshige, Kota ; Perlmutter, Joel S. ; Parsons, Stanley M. ; Tu, Zhude</creator><creatorcontrib>Luo, Zonghua ; Liu, Hui ; Jin, Hongjun ; Gu, Jiwei ; Yu, Yanbo ; Kaneshige, Kota ; Perlmutter, Joel S. ; Parsons, Stanley M. ; Tu, Zhude</creatorcontrib><description>Sixteen new sulfur‐containing compounds targeting the vesicular acetylcholine transporter (VAChT) were synthesized and assessed for in vitro binding affinities. Enantiomers (−)‐(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaphthalen‐2‐yl)piperidin‐4‐yl)(4‐(methylthio)phenyl)methanone [(−)‐8] and (−)‐(4‐((2‐fluoroethyl)thio)phenyl)(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaph‐thalen‐2‐yl)piperidin‐4‐yl)methanone [(−)‐14 a] displayed high binding affinities, with respective Ki values of 1.4 and 2.2 nm for human VAChT, moderate and high selectivity for human VAChT over σ1 (≈13‐fold) and σ2 receptors (&gt;420‐fold). Radiosyntheses of (−)‐[11C]8 and (−)‐[18F]14 a were achieved using conventional methods. Ex vivo autoradiography and biodistribution studies in Sprague–Dawley rats indicated that both radiotracers have the capacity to penetrate the blood–brain barrier, with high initial brain uptake at 5 min and rapid washout. The striatal region had the highest accumulation for both radiotracers. Pretreating the rats with the VAChT ligand (−)‐vesamicol decreased brain uptake for both radiotracers. Pretreating the rats with the σ1 ligand YUN‐122 (N‐(4‐benzylcyclohexyl)‐2‐(2‐fluorophenyl)acetamide) also decreased brain uptake, suggesting these two radiotracers also bind to the σ1 receptor in vivo. The microPET study of (−)‐[11C]8 in the brain of a non‐human primate showed high striatal accumulation that peaked quickly and washed out rapidly. Although preliminary results indicated these two sulfur‐containing radiotracers have high binding affinities for VAChT with rapid washout kinetics from the striatum, their σ1 receptor binding properties limit their potential as radiotracers for quantifying VAChT in vivo. Let's image: New sulfur‐containing analogues have high potency for the vesicular acetylcholine transporter (VAChT). The radiosyntheses of two lead radiotracers are straightforward and effective. Rodent studies demonstrated the tracers can enter the brain with high accumulation in the striatum. PET studies indicated the lead 11C tracer has rapid washout kinetics from the macaque brain. Although moderate σ1 receptor binding affinity limited the in vivo mapping of VAChT, structure–activity relationship data may provide information for future explorations of new VAChT radioligands.</description><identifier>ISSN: 1860-7179</identifier><identifier>EISSN: 1860-7187</identifier><identifier>DOI: 10.1002/cmdc.201800411</identifier><identifier>PMID: 30071131</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Accumulation ; Acetylcholine ; Affinity ; Animals ; Autoradiography ; Binding ; biodistribution ; Blood-Brain Barrier - drug effects ; Blood-Brain Barrier - metabolism ; Brain ; Brain - drug effects ; Brain - metabolism ; Dose-Response Relationship, Drug ; Enantiomers ; Humans ; In vivo methods and tests ; Kinetics ; Ligands ; Molecular Structure ; Neostriatum ; neurodegenerative diseases ; Neuroimaging ; positron emission tomography ; Radioactive tracers ; Radiopharmaceuticals - chemistry ; Radiopharmaceuticals - metabolism ; Radiopharmaceuticals - pharmacokinetics ; radiotracers ; Rats ; Rats, Sprague-Dawley ; Receptors ; Structure-Activity Relationship ; Sulfur ; Sulfur - chemistry ; Tissue Distribution ; Vesamicol ; Vesicular Acetylcholine Transport Proteins - analysis ; Vesicular Acetylcholine Transport Proteins - antagonists &amp; inhibitors ; Vesicular Acetylcholine Transport Proteins - metabolism ; Vesicular acetylcholine transporter</subject><ispartof>ChemMedChem, 2018-09, Vol.13 (18), p.1978-1987</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4131-a7a5338026395401866bfb2e2096b860878f9cd10692d10930dbcea9009c63f83</citedby><cites>FETCH-LOGICAL-c4131-a7a5338026395401866bfb2e2096b860878f9cd10692d10930dbcea9009c63f83</cites><orcidid>0000-0003-2761-6617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcmdc.201800411$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcmdc.201800411$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30071131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Zonghua</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Jin, Hongjun</creatorcontrib><creatorcontrib>Gu, Jiwei</creatorcontrib><creatorcontrib>Yu, Yanbo</creatorcontrib><creatorcontrib>Kaneshige, Kota</creatorcontrib><creatorcontrib>Perlmutter, Joel S.</creatorcontrib><creatorcontrib>Parsons, Stanley M.</creatorcontrib><creatorcontrib>Tu, Zhude</creatorcontrib><title>Exploration of Sulfur‐Containing Analogues for Imaging Vesicular Acetylcholine Transporter in the Brain</title><title>ChemMedChem</title><addtitle>ChemMedChem</addtitle><description>Sixteen new sulfur‐containing compounds targeting the vesicular acetylcholine transporter (VAChT) were synthesized and assessed for in vitro binding affinities. Enantiomers (−)‐(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaphthalen‐2‐yl)piperidin‐4‐yl)(4‐(methylthio)phenyl)methanone [(−)‐8] and (−)‐(4‐((2‐fluoroethyl)thio)phenyl)(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaph‐thalen‐2‐yl)piperidin‐4‐yl)methanone [(−)‐14 a] displayed high binding affinities, with respective Ki values of 1.4 and 2.2 nm for human VAChT, moderate and high selectivity for human VAChT over σ1 (≈13‐fold) and σ2 receptors (&gt;420‐fold). Radiosyntheses of (−)‐[11C]8 and (−)‐[18F]14 a were achieved using conventional methods. Ex vivo autoradiography and biodistribution studies in Sprague–Dawley rats indicated that both radiotracers have the capacity to penetrate the blood–brain barrier, with high initial brain uptake at 5 min and rapid washout. The striatal region had the highest accumulation for both radiotracers. Pretreating the rats with the VAChT ligand (−)‐vesamicol decreased brain uptake for both radiotracers. Pretreating the rats with the σ1 ligand YUN‐122 (N‐(4‐benzylcyclohexyl)‐2‐(2‐fluorophenyl)acetamide) also decreased brain uptake, suggesting these two radiotracers also bind to the σ1 receptor in vivo. The microPET study of (−)‐[11C]8 in the brain of a non‐human primate showed high striatal accumulation that peaked quickly and washed out rapidly. Although preliminary results indicated these two sulfur‐containing radiotracers have high binding affinities for VAChT with rapid washout kinetics from the striatum, their σ1 receptor binding properties limit their potential as radiotracers for quantifying VAChT in vivo. Let's image: New sulfur‐containing analogues have high potency for the vesicular acetylcholine transporter (VAChT). The radiosyntheses of two lead radiotracers are straightforward and effective. Rodent studies demonstrated the tracers can enter the brain with high accumulation in the striatum. PET studies indicated the lead 11C tracer has rapid washout kinetics from the macaque brain. Although moderate σ1 receptor binding affinity limited the in vivo mapping of VAChT, structure–activity relationship data may provide information for future explorations of new VAChT radioligands.</description><subject>Accumulation</subject><subject>Acetylcholine</subject><subject>Affinity</subject><subject>Animals</subject><subject>Autoradiography</subject><subject>Binding</subject><subject>biodistribution</subject><subject>Blood-Brain Barrier - drug effects</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Enantiomers</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Molecular Structure</subject><subject>Neostriatum</subject><subject>neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>positron emission tomography</subject><subject>Radioactive tracers</subject><subject>Radiopharmaceuticals - chemistry</subject><subject>Radiopharmaceuticals - metabolism</subject><subject>Radiopharmaceuticals - pharmacokinetics</subject><subject>radiotracers</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors</subject><subject>Structure-Activity Relationship</subject><subject>Sulfur</subject><subject>Sulfur - chemistry</subject><subject>Tissue Distribution</subject><subject>Vesamicol</subject><subject>Vesicular Acetylcholine Transport Proteins - analysis</subject><subject>Vesicular Acetylcholine Transport Proteins - antagonists &amp; inhibitors</subject><subject>Vesicular Acetylcholine Transport Proteins - metabolism</subject><subject>Vesicular acetylcholine transporter</subject><issn>1860-7179</issn><issn>1860-7187</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLFOwzAURS0EolBYGZEl5pTnJE3ssYQClYoYKKyR49itqyQudiLoxifwjXwJrlrKyGJbT8dH716ELggMCEB4LepSDEIgFCAm5ACdEJpAkBKaHu7fKeuhU-eWHokpoceoFwGkhETkBOnxx6oylrfaNNgo_NxVqrPfn1-ZaVquG93M8ajhlZl30mFlLJ7UfL6ZvkqnRVdxi0dCtutKLEylG4lnljduZWwrLdYNbhcS31hvOkNHildOnu_uPnq5G8-yh2D6dD_JRtNAxH6jgKd8GEUUwiRiw9gHS5JCFaEMgSWFz0NTqpgoCSQs9CeLoCyE5AyAiSRSNOqjq613Zc2bX7rNl6azPoLLQwKUxiyJmacGW0pY45yVKl9ZXXO7zgnkm2bzTbP5vln_4XKn7Ypalnv8t0oPsC3wriu5_keXZ4-32Z_8B5PhhZY</recordid><startdate>20180919</startdate><enddate>20180919</enddate><creator>Luo, Zonghua</creator><creator>Liu, Hui</creator><creator>Jin, Hongjun</creator><creator>Gu, Jiwei</creator><creator>Yu, Yanbo</creator><creator>Kaneshige, Kota</creator><creator>Perlmutter, Joel S.</creator><creator>Parsons, Stanley M.</creator><creator>Tu, Zhude</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-2761-6617</orcidid></search><sort><creationdate>20180919</creationdate><title>Exploration of Sulfur‐Containing Analogues for Imaging Vesicular Acetylcholine Transporter in the Brain</title><author>Luo, Zonghua ; Liu, Hui ; Jin, Hongjun ; Gu, Jiwei ; Yu, Yanbo ; Kaneshige, Kota ; Perlmutter, Joel S. ; Parsons, Stanley M. ; Tu, Zhude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4131-a7a5338026395401866bfb2e2096b860878f9cd10692d10930dbcea9009c63f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Acetylcholine</topic><topic>Affinity</topic><topic>Animals</topic><topic>Autoradiography</topic><topic>Binding</topic><topic>biodistribution</topic><topic>Blood-Brain Barrier - drug effects</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Enantiomers</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Molecular Structure</topic><topic>Neostriatum</topic><topic>neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>positron emission tomography</topic><topic>Radioactive tracers</topic><topic>Radiopharmaceuticals - chemistry</topic><topic>Radiopharmaceuticals - metabolism</topic><topic>Radiopharmaceuticals - pharmacokinetics</topic><topic>radiotracers</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors</topic><topic>Structure-Activity Relationship</topic><topic>Sulfur</topic><topic>Sulfur - chemistry</topic><topic>Tissue Distribution</topic><topic>Vesamicol</topic><topic>Vesicular Acetylcholine Transport Proteins - analysis</topic><topic>Vesicular Acetylcholine Transport Proteins - antagonists &amp; inhibitors</topic><topic>Vesicular Acetylcholine Transport Proteins - metabolism</topic><topic>Vesicular acetylcholine transporter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Zonghua</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Jin, Hongjun</creatorcontrib><creatorcontrib>Gu, Jiwei</creatorcontrib><creatorcontrib>Yu, Yanbo</creatorcontrib><creatorcontrib>Kaneshige, Kota</creatorcontrib><creatorcontrib>Perlmutter, Joel S.</creatorcontrib><creatorcontrib>Parsons, Stanley M.</creatorcontrib><creatorcontrib>Tu, Zhude</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>ChemMedChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Zonghua</au><au>Liu, Hui</au><au>Jin, Hongjun</au><au>Gu, Jiwei</au><au>Yu, Yanbo</au><au>Kaneshige, Kota</au><au>Perlmutter, Joel S.</au><au>Parsons, Stanley M.</au><au>Tu, Zhude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploration of Sulfur‐Containing Analogues for Imaging Vesicular Acetylcholine Transporter in the Brain</atitle><jtitle>ChemMedChem</jtitle><addtitle>ChemMedChem</addtitle><date>2018-09-19</date><risdate>2018</risdate><volume>13</volume><issue>18</issue><spage>1978</spage><epage>1987</epage><pages>1978-1987</pages><issn>1860-7179</issn><eissn>1860-7187</eissn><abstract>Sixteen new sulfur‐containing compounds targeting the vesicular acetylcholine transporter (VAChT) were synthesized and assessed for in vitro binding affinities. Enantiomers (−)‐(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaphthalen‐2‐yl)piperidin‐4‐yl)(4‐(methylthio)phenyl)methanone [(−)‐8] and (−)‐(4‐((2‐fluoroethyl)thio)phenyl)(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaph‐thalen‐2‐yl)piperidin‐4‐yl)methanone [(−)‐14 a] displayed high binding affinities, with respective Ki values of 1.4 and 2.2 nm for human VAChT, moderate and high selectivity for human VAChT over σ1 (≈13‐fold) and σ2 receptors (&gt;420‐fold). Radiosyntheses of (−)‐[11C]8 and (−)‐[18F]14 a were achieved using conventional methods. Ex vivo autoradiography and biodistribution studies in Sprague–Dawley rats indicated that both radiotracers have the capacity to penetrate the blood–brain barrier, with high initial brain uptake at 5 min and rapid washout. The striatal region had the highest accumulation for both radiotracers. Pretreating the rats with the VAChT ligand (−)‐vesamicol decreased brain uptake for both radiotracers. Pretreating the rats with the σ1 ligand YUN‐122 (N‐(4‐benzylcyclohexyl)‐2‐(2‐fluorophenyl)acetamide) also decreased brain uptake, suggesting these two radiotracers also bind to the σ1 receptor in vivo. The microPET study of (−)‐[11C]8 in the brain of a non‐human primate showed high striatal accumulation that peaked quickly and washed out rapidly. Although preliminary results indicated these two sulfur‐containing radiotracers have high binding affinities for VAChT with rapid washout kinetics from the striatum, their σ1 receptor binding properties limit their potential as radiotracers for quantifying VAChT in vivo. Let's image: New sulfur‐containing analogues have high potency for the vesicular acetylcholine transporter (VAChT). The radiosyntheses of two lead radiotracers are straightforward and effective. Rodent studies demonstrated the tracers can enter the brain with high accumulation in the striatum. PET studies indicated the lead 11C tracer has rapid washout kinetics from the macaque brain. Although moderate σ1 receptor binding affinity limited the in vivo mapping of VAChT, structure–activity relationship data may provide information for future explorations of new VAChT radioligands.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30071131</pmid><doi>10.1002/cmdc.201800411</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2761-6617</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1860-7179
ispartof ChemMedChem, 2018-09, Vol.13 (18), p.1978-1987
issn 1860-7179
1860-7187
language eng
recordid cdi_proquest_journals_2108849649
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Accumulation
Acetylcholine
Affinity
Animals
Autoradiography
Binding
biodistribution
Blood-Brain Barrier - drug effects
Blood-Brain Barrier - metabolism
Brain
Brain - drug effects
Brain - metabolism
Dose-Response Relationship, Drug
Enantiomers
Humans
In vivo methods and tests
Kinetics
Ligands
Molecular Structure
Neostriatum
neurodegenerative diseases
Neuroimaging
positron emission tomography
Radioactive tracers
Radiopharmaceuticals - chemistry
Radiopharmaceuticals - metabolism
Radiopharmaceuticals - pharmacokinetics
radiotracers
Rats
Rats, Sprague-Dawley
Receptors
Structure-Activity Relationship
Sulfur
Sulfur - chemistry
Tissue Distribution
Vesamicol
Vesicular Acetylcholine Transport Proteins - analysis
Vesicular Acetylcholine Transport Proteins - antagonists & inhibitors
Vesicular Acetylcholine Transport Proteins - metabolism
Vesicular acetylcholine transporter
title Exploration of Sulfur‐Containing Analogues for Imaging Vesicular Acetylcholine Transporter in the Brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploration%20of%20Sulfur%E2%80%90Containing%20Analogues%20for%20Imaging%20Vesicular%20Acetylcholine%20Transporter%20in%20the%20Brain&rft.jtitle=ChemMedChem&rft.au=Luo,%20Zonghua&rft.date=2018-09-19&rft.volume=13&rft.issue=18&rft.spage=1978&rft.epage=1987&rft.pages=1978-1987&rft.issn=1860-7179&rft.eissn=1860-7187&rft_id=info:doi/10.1002/cmdc.201800411&rft_dat=%3Cproquest_cross%3E2108849649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108849649&rft_id=info:pmid/30071131&rfr_iscdi=true