Exploration of Sulfur‐Containing Analogues for Imaging Vesicular Acetylcholine Transporter in the Brain
Sixteen new sulfur‐containing compounds targeting the vesicular acetylcholine transporter (VAChT) were synthesized and assessed for in vitro binding affinities. Enantiomers (−)‐(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaphthalen‐2‐yl)piperidin‐4‐yl)(4‐(methylthio)phenyl)methanone [(−)‐8] and (−)‐(4‐((2‐fluor...
Gespeichert in:
Veröffentlicht in: | ChemMedChem 2018-09, Vol.13 (18), p.1978-1987 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1987 |
---|---|
container_issue | 18 |
container_start_page | 1978 |
container_title | ChemMedChem |
container_volume | 13 |
creator | Luo, Zonghua Liu, Hui Jin, Hongjun Gu, Jiwei Yu, Yanbo Kaneshige, Kota Perlmutter, Joel S. Parsons, Stanley M. Tu, Zhude |
description | Sixteen new sulfur‐containing compounds targeting the vesicular acetylcholine transporter (VAChT) were synthesized and assessed for in vitro binding affinities. Enantiomers (−)‐(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaphthalen‐2‐yl)piperidin‐4‐yl)(4‐(methylthio)phenyl)methanone [(−)‐8] and (−)‐(4‐((2‐fluoroethyl)thio)phenyl)(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaph‐thalen‐2‐yl)piperidin‐4‐yl)methanone [(−)‐14 a] displayed high binding affinities, with respective Ki values of 1.4 and 2.2 nm for human VAChT, moderate and high selectivity for human VAChT over σ1 (≈13‐fold) and σ2 receptors (>420‐fold). Radiosyntheses of (−)‐[11C]8 and (−)‐[18F]14 a were achieved using conventional methods. Ex vivo autoradiography and biodistribution studies in Sprague–Dawley rats indicated that both radiotracers have the capacity to penetrate the blood–brain barrier, with high initial brain uptake at 5 min and rapid washout. The striatal region had the highest accumulation for both radiotracers. Pretreating the rats with the VAChT ligand (−)‐vesamicol decreased brain uptake for both radiotracers. Pretreating the rats with the σ1 ligand YUN‐122 (N‐(4‐benzylcyclohexyl)‐2‐(2‐fluorophenyl)acetamide) also decreased brain uptake, suggesting these two radiotracers also bind to the σ1 receptor in vivo. The microPET study of (−)‐[11C]8 in the brain of a non‐human primate showed high striatal accumulation that peaked quickly and washed out rapidly. Although preliminary results indicated these two sulfur‐containing radiotracers have high binding affinities for VAChT with rapid washout kinetics from the striatum, their σ1 receptor binding properties limit their potential as radiotracers for quantifying VAChT in vivo.
Let's image: New sulfur‐containing analogues have high potency for the vesicular acetylcholine transporter (VAChT). The radiosyntheses of two lead radiotracers are straightforward and effective. Rodent studies demonstrated the tracers can enter the brain with high accumulation in the striatum. PET studies indicated the lead 11C tracer has rapid washout kinetics from the macaque brain. Although moderate σ1 receptor binding affinity limited the in vivo mapping of VAChT, structure–activity relationship data may provide information for future explorations of new VAChT radioligands. |
doi_str_mv | 10.1002/cmdc.201800411 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2108849649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2108849649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4131-a7a5338026395401866bfb2e2096b860878f9cd10692d10930dbcea9009c63f83</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EolBYGZEl5pTnJE3ssYQClYoYKKyR49itqyQudiLoxifwjXwJrlrKyGJbT8dH716ELggMCEB4LepSDEIgFCAm5ACdEJpAkBKaHu7fKeuhU-eWHokpoceoFwGkhETkBOnxx6oylrfaNNgo_NxVqrPfn1-ZaVquG93M8ajhlZl30mFlLJ7UfL6ZvkqnRVdxi0dCtutKLEylG4lnljduZWwrLdYNbhcS31hvOkNHildOnu_uPnq5G8-yh2D6dD_JRtNAxH6jgKd8GEUUwiRiw9gHS5JCFaEMgSWFz0NTqpgoCSQs9CeLoCyE5AyAiSRSNOqjq613Zc2bX7rNl6azPoLLQwKUxiyJmacGW0pY45yVKl9ZXXO7zgnkm2bzTbP5vln_4XKn7Ypalnv8t0oPsC3wriu5_keXZ4-32Z_8B5PhhZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108849649</pqid></control><display><type>article</type><title>Exploration of Sulfur‐Containing Analogues for Imaging Vesicular Acetylcholine Transporter in the Brain</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Luo, Zonghua ; Liu, Hui ; Jin, Hongjun ; Gu, Jiwei ; Yu, Yanbo ; Kaneshige, Kota ; Perlmutter, Joel S. ; Parsons, Stanley M. ; Tu, Zhude</creator><creatorcontrib>Luo, Zonghua ; Liu, Hui ; Jin, Hongjun ; Gu, Jiwei ; Yu, Yanbo ; Kaneshige, Kota ; Perlmutter, Joel S. ; Parsons, Stanley M. ; Tu, Zhude</creatorcontrib><description>Sixteen new sulfur‐containing compounds targeting the vesicular acetylcholine transporter (VAChT) were synthesized and assessed for in vitro binding affinities. Enantiomers (−)‐(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaphthalen‐2‐yl)piperidin‐4‐yl)(4‐(methylthio)phenyl)methanone [(−)‐8] and (−)‐(4‐((2‐fluoroethyl)thio)phenyl)(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaph‐thalen‐2‐yl)piperidin‐4‐yl)methanone [(−)‐14 a] displayed high binding affinities, with respective Ki values of 1.4 and 2.2 nm for human VAChT, moderate and high selectivity for human VAChT over σ1 (≈13‐fold) and σ2 receptors (>420‐fold). Radiosyntheses of (−)‐[11C]8 and (−)‐[18F]14 a were achieved using conventional methods. Ex vivo autoradiography and biodistribution studies in Sprague–Dawley rats indicated that both radiotracers have the capacity to penetrate the blood–brain barrier, with high initial brain uptake at 5 min and rapid washout. The striatal region had the highest accumulation for both radiotracers. Pretreating the rats with the VAChT ligand (−)‐vesamicol decreased brain uptake for both radiotracers. Pretreating the rats with the σ1 ligand YUN‐122 (N‐(4‐benzylcyclohexyl)‐2‐(2‐fluorophenyl)acetamide) also decreased brain uptake, suggesting these two radiotracers also bind to the σ1 receptor in vivo. The microPET study of (−)‐[11C]8 in the brain of a non‐human primate showed high striatal accumulation that peaked quickly and washed out rapidly. Although preliminary results indicated these two sulfur‐containing radiotracers have high binding affinities for VAChT with rapid washout kinetics from the striatum, their σ1 receptor binding properties limit their potential as radiotracers for quantifying VAChT in vivo.
Let's image: New sulfur‐containing analogues have high potency for the vesicular acetylcholine transporter (VAChT). The radiosyntheses of two lead radiotracers are straightforward and effective. Rodent studies demonstrated the tracers can enter the brain with high accumulation in the striatum. PET studies indicated the lead 11C tracer has rapid washout kinetics from the macaque brain. Although moderate σ1 receptor binding affinity limited the in vivo mapping of VAChT, structure–activity relationship data may provide information for future explorations of new VAChT radioligands.</description><identifier>ISSN: 1860-7179</identifier><identifier>EISSN: 1860-7187</identifier><identifier>DOI: 10.1002/cmdc.201800411</identifier><identifier>PMID: 30071131</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Accumulation ; Acetylcholine ; Affinity ; Animals ; Autoradiography ; Binding ; biodistribution ; Blood-Brain Barrier - drug effects ; Blood-Brain Barrier - metabolism ; Brain ; Brain - drug effects ; Brain - metabolism ; Dose-Response Relationship, Drug ; Enantiomers ; Humans ; In vivo methods and tests ; Kinetics ; Ligands ; Molecular Structure ; Neostriatum ; neurodegenerative diseases ; Neuroimaging ; positron emission tomography ; Radioactive tracers ; Radiopharmaceuticals - chemistry ; Radiopharmaceuticals - metabolism ; Radiopharmaceuticals - pharmacokinetics ; radiotracers ; Rats ; Rats, Sprague-Dawley ; Receptors ; Structure-Activity Relationship ; Sulfur ; Sulfur - chemistry ; Tissue Distribution ; Vesamicol ; Vesicular Acetylcholine Transport Proteins - analysis ; Vesicular Acetylcholine Transport Proteins - antagonists & inhibitors ; Vesicular Acetylcholine Transport Proteins - metabolism ; Vesicular acetylcholine transporter</subject><ispartof>ChemMedChem, 2018-09, Vol.13 (18), p.1978-1987</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4131-a7a5338026395401866bfb2e2096b860878f9cd10692d10930dbcea9009c63f83</citedby><cites>FETCH-LOGICAL-c4131-a7a5338026395401866bfb2e2096b860878f9cd10692d10930dbcea9009c63f83</cites><orcidid>0000-0003-2761-6617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcmdc.201800411$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcmdc.201800411$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30071131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Zonghua</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Jin, Hongjun</creatorcontrib><creatorcontrib>Gu, Jiwei</creatorcontrib><creatorcontrib>Yu, Yanbo</creatorcontrib><creatorcontrib>Kaneshige, Kota</creatorcontrib><creatorcontrib>Perlmutter, Joel S.</creatorcontrib><creatorcontrib>Parsons, Stanley M.</creatorcontrib><creatorcontrib>Tu, Zhude</creatorcontrib><title>Exploration of Sulfur‐Containing Analogues for Imaging Vesicular Acetylcholine Transporter in the Brain</title><title>ChemMedChem</title><addtitle>ChemMedChem</addtitle><description>Sixteen new sulfur‐containing compounds targeting the vesicular acetylcholine transporter (VAChT) were synthesized and assessed for in vitro binding affinities. Enantiomers (−)‐(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaphthalen‐2‐yl)piperidin‐4‐yl)(4‐(methylthio)phenyl)methanone [(−)‐8] and (−)‐(4‐((2‐fluoroethyl)thio)phenyl)(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaph‐thalen‐2‐yl)piperidin‐4‐yl)methanone [(−)‐14 a] displayed high binding affinities, with respective Ki values of 1.4 and 2.2 nm for human VAChT, moderate and high selectivity for human VAChT over σ1 (≈13‐fold) and σ2 receptors (>420‐fold). Radiosyntheses of (−)‐[11C]8 and (−)‐[18F]14 a were achieved using conventional methods. Ex vivo autoradiography and biodistribution studies in Sprague–Dawley rats indicated that both radiotracers have the capacity to penetrate the blood–brain barrier, with high initial brain uptake at 5 min and rapid washout. The striatal region had the highest accumulation for both radiotracers. Pretreating the rats with the VAChT ligand (−)‐vesamicol decreased brain uptake for both radiotracers. Pretreating the rats with the σ1 ligand YUN‐122 (N‐(4‐benzylcyclohexyl)‐2‐(2‐fluorophenyl)acetamide) also decreased brain uptake, suggesting these two radiotracers also bind to the σ1 receptor in vivo. The microPET study of (−)‐[11C]8 in the brain of a non‐human primate showed high striatal accumulation that peaked quickly and washed out rapidly. Although preliminary results indicated these two sulfur‐containing radiotracers have high binding affinities for VAChT with rapid washout kinetics from the striatum, their σ1 receptor binding properties limit their potential as radiotracers for quantifying VAChT in vivo.
Let's image: New sulfur‐containing analogues have high potency for the vesicular acetylcholine transporter (VAChT). The radiosyntheses of two lead radiotracers are straightforward and effective. Rodent studies demonstrated the tracers can enter the brain with high accumulation in the striatum. PET studies indicated the lead 11C tracer has rapid washout kinetics from the macaque brain. Although moderate σ1 receptor binding affinity limited the in vivo mapping of VAChT, structure–activity relationship data may provide information for future explorations of new VAChT radioligands.</description><subject>Accumulation</subject><subject>Acetylcholine</subject><subject>Affinity</subject><subject>Animals</subject><subject>Autoradiography</subject><subject>Binding</subject><subject>biodistribution</subject><subject>Blood-Brain Barrier - drug effects</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Enantiomers</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Molecular Structure</subject><subject>Neostriatum</subject><subject>neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>positron emission tomography</subject><subject>Radioactive tracers</subject><subject>Radiopharmaceuticals - chemistry</subject><subject>Radiopharmaceuticals - metabolism</subject><subject>Radiopharmaceuticals - pharmacokinetics</subject><subject>radiotracers</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors</subject><subject>Structure-Activity Relationship</subject><subject>Sulfur</subject><subject>Sulfur - chemistry</subject><subject>Tissue Distribution</subject><subject>Vesamicol</subject><subject>Vesicular Acetylcholine Transport Proteins - analysis</subject><subject>Vesicular Acetylcholine Transport Proteins - antagonists & inhibitors</subject><subject>Vesicular Acetylcholine Transport Proteins - metabolism</subject><subject>Vesicular acetylcholine transporter</subject><issn>1860-7179</issn><issn>1860-7187</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLFOwzAURS0EolBYGZEl5pTnJE3ssYQClYoYKKyR49itqyQudiLoxifwjXwJrlrKyGJbT8dH716ELggMCEB4LepSDEIgFCAm5ACdEJpAkBKaHu7fKeuhU-eWHokpoceoFwGkhETkBOnxx6oylrfaNNgo_NxVqrPfn1-ZaVquG93M8ajhlZl30mFlLJ7UfL6ZvkqnRVdxi0dCtutKLEylG4lnljduZWwrLdYNbhcS31hvOkNHildOnu_uPnq5G8-yh2D6dD_JRtNAxH6jgKd8GEUUwiRiw9gHS5JCFaEMgSWFz0NTqpgoCSQs9CeLoCyE5AyAiSRSNOqjq613Zc2bX7rNl6azPoLLQwKUxiyJmacGW0pY45yVKl9ZXXO7zgnkm2bzTbP5vln_4XKn7Ypalnv8t0oPsC3wriu5_keXZ4-32Z_8B5PhhZY</recordid><startdate>20180919</startdate><enddate>20180919</enddate><creator>Luo, Zonghua</creator><creator>Liu, Hui</creator><creator>Jin, Hongjun</creator><creator>Gu, Jiwei</creator><creator>Yu, Yanbo</creator><creator>Kaneshige, Kota</creator><creator>Perlmutter, Joel S.</creator><creator>Parsons, Stanley M.</creator><creator>Tu, Zhude</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-2761-6617</orcidid></search><sort><creationdate>20180919</creationdate><title>Exploration of Sulfur‐Containing Analogues for Imaging Vesicular Acetylcholine Transporter in the Brain</title><author>Luo, Zonghua ; Liu, Hui ; Jin, Hongjun ; Gu, Jiwei ; Yu, Yanbo ; Kaneshige, Kota ; Perlmutter, Joel S. ; Parsons, Stanley M. ; Tu, Zhude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4131-a7a5338026395401866bfb2e2096b860878f9cd10692d10930dbcea9009c63f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Acetylcholine</topic><topic>Affinity</topic><topic>Animals</topic><topic>Autoradiography</topic><topic>Binding</topic><topic>biodistribution</topic><topic>Blood-Brain Barrier - drug effects</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Enantiomers</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Molecular Structure</topic><topic>Neostriatum</topic><topic>neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>positron emission tomography</topic><topic>Radioactive tracers</topic><topic>Radiopharmaceuticals - chemistry</topic><topic>Radiopharmaceuticals - metabolism</topic><topic>Radiopharmaceuticals - pharmacokinetics</topic><topic>radiotracers</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors</topic><topic>Structure-Activity Relationship</topic><topic>Sulfur</topic><topic>Sulfur - chemistry</topic><topic>Tissue Distribution</topic><topic>Vesamicol</topic><topic>Vesicular Acetylcholine Transport Proteins - analysis</topic><topic>Vesicular Acetylcholine Transport Proteins - antagonists & inhibitors</topic><topic>Vesicular Acetylcholine Transport Proteins - metabolism</topic><topic>Vesicular acetylcholine transporter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Zonghua</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Jin, Hongjun</creatorcontrib><creatorcontrib>Gu, Jiwei</creatorcontrib><creatorcontrib>Yu, Yanbo</creatorcontrib><creatorcontrib>Kaneshige, Kota</creatorcontrib><creatorcontrib>Perlmutter, Joel S.</creatorcontrib><creatorcontrib>Parsons, Stanley M.</creatorcontrib><creatorcontrib>Tu, Zhude</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>ChemMedChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Zonghua</au><au>Liu, Hui</au><au>Jin, Hongjun</au><au>Gu, Jiwei</au><au>Yu, Yanbo</au><au>Kaneshige, Kota</au><au>Perlmutter, Joel S.</au><au>Parsons, Stanley M.</au><au>Tu, Zhude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploration of Sulfur‐Containing Analogues for Imaging Vesicular Acetylcholine Transporter in the Brain</atitle><jtitle>ChemMedChem</jtitle><addtitle>ChemMedChem</addtitle><date>2018-09-19</date><risdate>2018</risdate><volume>13</volume><issue>18</issue><spage>1978</spage><epage>1987</epage><pages>1978-1987</pages><issn>1860-7179</issn><eissn>1860-7187</eissn><abstract>Sixteen new sulfur‐containing compounds targeting the vesicular acetylcholine transporter (VAChT) were synthesized and assessed for in vitro binding affinities. Enantiomers (−)‐(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaphthalen‐2‐yl)piperidin‐4‐yl)(4‐(methylthio)phenyl)methanone [(−)‐8] and (−)‐(4‐((2‐fluoroethyl)thio)phenyl)(1‐(3‐hydroxy‐1,2,3,4‐tetrahydronaph‐thalen‐2‐yl)piperidin‐4‐yl)methanone [(−)‐14 a] displayed high binding affinities, with respective Ki values of 1.4 and 2.2 nm for human VAChT, moderate and high selectivity for human VAChT over σ1 (≈13‐fold) and σ2 receptors (>420‐fold). Radiosyntheses of (−)‐[11C]8 and (−)‐[18F]14 a were achieved using conventional methods. Ex vivo autoradiography and biodistribution studies in Sprague–Dawley rats indicated that both radiotracers have the capacity to penetrate the blood–brain barrier, with high initial brain uptake at 5 min and rapid washout. The striatal region had the highest accumulation for both radiotracers. Pretreating the rats with the VAChT ligand (−)‐vesamicol decreased brain uptake for both radiotracers. Pretreating the rats with the σ1 ligand YUN‐122 (N‐(4‐benzylcyclohexyl)‐2‐(2‐fluorophenyl)acetamide) also decreased brain uptake, suggesting these two radiotracers also bind to the σ1 receptor in vivo. The microPET study of (−)‐[11C]8 in the brain of a non‐human primate showed high striatal accumulation that peaked quickly and washed out rapidly. Although preliminary results indicated these two sulfur‐containing radiotracers have high binding affinities for VAChT with rapid washout kinetics from the striatum, their σ1 receptor binding properties limit their potential as radiotracers for quantifying VAChT in vivo.
Let's image: New sulfur‐containing analogues have high potency for the vesicular acetylcholine transporter (VAChT). The radiosyntheses of two lead radiotracers are straightforward and effective. Rodent studies demonstrated the tracers can enter the brain with high accumulation in the striatum. PET studies indicated the lead 11C tracer has rapid washout kinetics from the macaque brain. Although moderate σ1 receptor binding affinity limited the in vivo mapping of VAChT, structure–activity relationship data may provide information for future explorations of new VAChT radioligands.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30071131</pmid><doi>10.1002/cmdc.201800411</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2761-6617</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1860-7179 |
ispartof | ChemMedChem, 2018-09, Vol.13 (18), p.1978-1987 |
issn | 1860-7179 1860-7187 |
language | eng |
recordid | cdi_proquest_journals_2108849649 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Accumulation Acetylcholine Affinity Animals Autoradiography Binding biodistribution Blood-Brain Barrier - drug effects Blood-Brain Barrier - metabolism Brain Brain - drug effects Brain - metabolism Dose-Response Relationship, Drug Enantiomers Humans In vivo methods and tests Kinetics Ligands Molecular Structure Neostriatum neurodegenerative diseases Neuroimaging positron emission tomography Radioactive tracers Radiopharmaceuticals - chemistry Radiopharmaceuticals - metabolism Radiopharmaceuticals - pharmacokinetics radiotracers Rats Rats, Sprague-Dawley Receptors Structure-Activity Relationship Sulfur Sulfur - chemistry Tissue Distribution Vesamicol Vesicular Acetylcholine Transport Proteins - analysis Vesicular Acetylcholine Transport Proteins - antagonists & inhibitors Vesicular Acetylcholine Transport Proteins - metabolism Vesicular acetylcholine transporter |
title | Exploration of Sulfur‐Containing Analogues for Imaging Vesicular Acetylcholine Transporter in the Brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploration%20of%20Sulfur%E2%80%90Containing%20Analogues%20for%20Imaging%20Vesicular%20Acetylcholine%20Transporter%20in%20the%20Brain&rft.jtitle=ChemMedChem&rft.au=Luo,%20Zonghua&rft.date=2018-09-19&rft.volume=13&rft.issue=18&rft.spage=1978&rft.epage=1987&rft.pages=1978-1987&rft.issn=1860-7179&rft.eissn=1860-7187&rft_id=info:doi/10.1002/cmdc.201800411&rft_dat=%3Cproquest_cross%3E2108849649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108849649&rft_id=info:pmid/30071131&rfr_iscdi=true |