A possible reinterpretation of the Princeton superpipe data
In experiments recently performed at Melbourne, Pitot-tube mean velocity profiles in a boundary layer disagreed with those obtained with hot wires. The standard MacMillan (1956) correction for the probe displacement effect and a correction for turbulence intensity were both required for obtaining ag...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2001-07, Vol.439, p.395-401 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 401 |
---|---|
container_issue | |
container_start_page | 395 |
container_title | Journal of fluid mechanics |
container_volume | 439 |
creator | PERRY, A. E. HAFEZ, S. CHONG, M. S. |
description | In experiments recently performed at Melbourne, Pitot-tube mean velocity profiles
in a boundary layer disagreed with those obtained with hot wires. The standard
MacMillan (1956) correction for the probe displacement effect and a correction for
turbulence intensity were both required for obtaining agreement between the two
sets of mean velocity data. We were thus motivated to reanalyse the Princeton
superpipe data using the same two corrections. The result is a plausible conclusion
that the superpipe is rough at the higher Reynolds numbers and its data follow the
Colebrook (1939) formula for commercial pipes rather well. It also appears that the
logarithmic law of the wall is valid, with a Kármán constant close to that found
recently by Österlund (1999) from boundary layer measurements with a hot wire. The
smooth regime in the pipe gave almost the same additive constant for the log-law as
Österlund's. A comparison between the superpipe data and the pipe data of Perry,
Henbest & Chong (1997) suggests that the conventional velocity defect law may be
valid down to lower Reynolds numbers than concluded by Zagarola & Smits (1998). |
doi_str_mv | 10.1017/S0022112001004840 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_210880310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112001004840</cupid><sourcerecordid>1399020401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-2324ce68188b78631c1a289b2461ea517bd641bec789f3a2718f5c50b2fa3ed93</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNsiXlczSTbJ4qlWrUKL_88hm2Y1td1dkxT025vSooJ4Gpj3ezNvBqFDwCeAQZw-YkwIAMEYMGaS4S3UA8bLXHBWbKPeSs5X-i7aC2GWMIpL0UNng6xrQ3DV3GbeuiZa33kbdXRtk7V1Fl9tduddY2xMjbDsku46m0111Ptop9bzYA82tY-ery6fhtf5-HZ0MxyMc8NIGXNCCTOWS5CyEpJTMKCJLCvCOFhdgKimnEFljZBlTTURIOvCFLgitaZ2WtI-OlrP7Xz7vrQhqlm79E1aqQhgKTEFnCBYQ8ane7ytVefdQvtPBVitXqT-vCh5jjeDdTB6XnvdGBd-GQtSEpGwfI25EO3Ht6z9m-KCikLx0b26mDyc8wmUiieebqLoReXd9MX-BP4_zBf6PoIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210880310</pqid></control><display><type>article</type><title>A possible reinterpretation of the Princeton superpipe data</title><source>Cambridge University Press Journals Complete</source><creator>PERRY, A. E. ; HAFEZ, S. ; CHONG, M. S.</creator><creatorcontrib>PERRY, A. E. ; HAFEZ, S. ; CHONG, M. S.</creatorcontrib><description>In experiments recently performed at Melbourne, Pitot-tube mean velocity profiles
in a boundary layer disagreed with those obtained with hot wires. The standard
MacMillan (1956) correction for the probe displacement effect and a correction for
turbulence intensity were both required for obtaining agreement between the two
sets of mean velocity data. We were thus motivated to reanalyse the Princeton
superpipe data using the same two corrections. The result is a plausible conclusion
that the superpipe is rough at the higher Reynolds numbers and its data follow the
Colebrook (1939) formula for commercial pipes rather well. It also appears that the
logarithmic law of the wall is valid, with a Kármán constant close to that found
recently by Österlund (1999) from boundary layer measurements with a hot wire. The
smooth regime in the pipe gave almost the same additive constant for the log-law as
Österlund's. A comparison between the superpipe data and the pipe data of Perry,
Henbest & Chong (1997) suggests that the conventional velocity defect law may be
valid down to lower Reynolds numbers than concluded by Zagarola & Smits (1998).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112001004840</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layers ; Exact sciences and technology ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Physics</subject><ispartof>Journal of fluid mechanics, 2001-07, Vol.439, p.395-401</ispartof><rights>2001 Cambridge University Press</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-2324ce68188b78631c1a289b2461ea517bd641bec789f3a2718f5c50b2fa3ed93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112001004840/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1052927$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PERRY, A. E.</creatorcontrib><creatorcontrib>HAFEZ, S.</creatorcontrib><creatorcontrib>CHONG, M. S.</creatorcontrib><title>A possible reinterpretation of the Princeton superpipe data</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>In experiments recently performed at Melbourne, Pitot-tube mean velocity profiles
in a boundary layer disagreed with those obtained with hot wires. The standard
MacMillan (1956) correction for the probe displacement effect and a correction for
turbulence intensity were both required for obtaining agreement between the two
sets of mean velocity data. We were thus motivated to reanalyse the Princeton
superpipe data using the same two corrections. The result is a plausible conclusion
that the superpipe is rough at the higher Reynolds numbers and its data follow the
Colebrook (1939) formula for commercial pipes rather well. It also appears that the
logarithmic law of the wall is valid, with a Kármán constant close to that found
recently by Österlund (1999) from boundary layer measurements with a hot wire. The
smooth regime in the pipe gave almost the same additive constant for the log-law as
Österlund's. A comparison between the superpipe data and the pipe data of Perry,
Henbest & Chong (1997) suggests that the conventional velocity defect law may be
valid down to lower Reynolds numbers than concluded by Zagarola & Smits (1998).</description><subject>Boundary layers</subject><subject>Exact sciences and technology</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNsiXlczSTbJ4qlWrUKL_88hm2Y1td1dkxT025vSooJ4Gpj3ezNvBqFDwCeAQZw-YkwIAMEYMGaS4S3UA8bLXHBWbKPeSs5X-i7aC2GWMIpL0UNng6xrQ3DV3GbeuiZa33kbdXRtk7V1Fl9tduddY2xMjbDsku46m0111Ptop9bzYA82tY-ery6fhtf5-HZ0MxyMc8NIGXNCCTOWS5CyEpJTMKCJLCvCOFhdgKimnEFljZBlTTURIOvCFLgitaZ2WtI-OlrP7Xz7vrQhqlm79E1aqQhgKTEFnCBYQ8ane7ytVefdQvtPBVitXqT-vCh5jjeDdTB6XnvdGBd-GQtSEpGwfI25EO3Ht6z9m-KCikLx0b26mDyc8wmUiieebqLoReXd9MX-BP4_zBf6PoIE</recordid><startdate>20010725</startdate><enddate>20010725</enddate><creator>PERRY, A. E.</creator><creator>HAFEZ, S.</creator><creator>CHONG, M. S.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20010725</creationdate><title>A possible reinterpretation of the Princeton superpipe data</title><author>PERRY, A. E. ; HAFEZ, S. ; CHONG, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-2324ce68188b78631c1a289b2461ea517bd641bec789f3a2718f5c50b2fa3ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Boundary layers</topic><topic>Exact sciences and technology</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PERRY, A. E.</creatorcontrib><creatorcontrib>HAFEZ, S.</creatorcontrib><creatorcontrib>CHONG, M. S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PERRY, A. E.</au><au>HAFEZ, S.</au><au>CHONG, M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A possible reinterpretation of the Princeton superpipe data</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2001-07-25</date><risdate>2001</risdate><volume>439</volume><spage>395</spage><epage>401</epage><pages>395-401</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>In experiments recently performed at Melbourne, Pitot-tube mean velocity profiles
in a boundary layer disagreed with those obtained with hot wires. The standard
MacMillan (1956) correction for the probe displacement effect and a correction for
turbulence intensity were both required for obtaining agreement between the two
sets of mean velocity data. We were thus motivated to reanalyse the Princeton
superpipe data using the same two corrections. The result is a plausible conclusion
that the superpipe is rough at the higher Reynolds numbers and its data follow the
Colebrook (1939) formula for commercial pipes rather well. It also appears that the
logarithmic law of the wall is valid, with a Kármán constant close to that found
recently by Österlund (1999) from boundary layer measurements with a hot wire. The
smooth regime in the pipe gave almost the same additive constant for the log-law as
Österlund's. A comparison between the superpipe data and the pipe data of Perry,
Henbest & Chong (1997) suggests that the conventional velocity defect law may be
valid down to lower Reynolds numbers than concluded by Zagarola & Smits (1998).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112001004840</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2001-07, Vol.439, p.395-401 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_210880310 |
source | Cambridge University Press Journals Complete |
subjects | Boundary layers Exact sciences and technology Flows in ducts, channels, nozzles, and conduits Fluid dynamics Fluid mechanics Fundamental areas of phenomenology (including applications) Physics |
title | A possible reinterpretation of the Princeton superpipe data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20possible%20reinterpretation%20of%20the%20Princeton%20superpipe%20data&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=PERRY,%20A.%20E.&rft.date=2001-07-25&rft.volume=439&rft.spage=395&rft.epage=401&rft.pages=395-401&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112001004840&rft_dat=%3Cproquest_cross%3E1399020401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210880310&rft_id=info:pmid/&rft_cupid=10_1017_S0022112001004840&rfr_iscdi=true |