Multi-Skein Invariants for Welded and Extended Welded Knots and Links

The theory of welded and extended welded knots is a generalization of classical knot theory. Welded (resp. extended welded) knot diagrams include virtual crossings (resp. virtual crossings and wen marks) and are equivalent under an extended set of Reidemeister-type moves. We present a new class of i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-09
Hauptverfasser: Backes, N, Kaiser, M, Leafblad, T, Peterson, E I C, Yetter, D N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Backes, N
Kaiser, M
Leafblad, T
Peterson, E I C
Yetter, D N
description The theory of welded and extended welded knots is a generalization of classical knot theory. Welded (resp. extended welded) knot diagrams include virtual crossings (resp. virtual crossings and wen marks) and are equivalent under an extended set of Reidemeister-type moves. We present a new class of invariants for welded and extended welded knots and links using a multi-skein relation, following Z. Yang's approach for virtual knots. Using this skein-theoretic approach, we find sufficient conditions on the coefficients to obtain invariance under the extended Reidemeister moves appropriate to welded and extended welded links.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2108715021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2108715021</sourcerecordid><originalsourceid>FETCH-proquest_journals_21087150213</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw9S3NKcnUDc5OzcxT8MwrSyzKTMwrKVZIyy9SCE_NSUlNUUjMS1FwrShJzQNxoGLeeflARSAZn8y87GIeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3MjSwMDc0NTAyNCZOFQAhujoJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108715021</pqid></control><display><type>article</type><title>Multi-Skein Invariants for Welded and Extended Welded Knots and Links</title><source>Free E- Journals</source><creator>Backes, N ; Kaiser, M ; Leafblad, T ; Peterson, E I C ; Yetter, D N</creator><creatorcontrib>Backes, N ; Kaiser, M ; Leafblad, T ; Peterson, E I C ; Yetter, D N</creatorcontrib><description>The theory of welded and extended welded knots is a generalization of classical knot theory. Welded (resp. extended welded) knot diagrams include virtual crossings (resp. virtual crossings and wen marks) and are equivalent under an extended set of Reidemeister-type moves. We present a new class of invariants for welded and extended welded knots and links using a multi-skein relation, following Z. Yang's approach for virtual knots. Using this skein-theoretic approach, we find sufficient conditions on the coefficients to obtain invariance under the extended Reidemeister moves appropriate to welded and extended welded links.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Invariants ; Knot theory ; Knots ; Links</subject><ispartof>arXiv.org, 2018-09</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Backes, N</creatorcontrib><creatorcontrib>Kaiser, M</creatorcontrib><creatorcontrib>Leafblad, T</creatorcontrib><creatorcontrib>Peterson, E I C</creatorcontrib><creatorcontrib>Yetter, D N</creatorcontrib><title>Multi-Skein Invariants for Welded and Extended Welded Knots and Links</title><title>arXiv.org</title><description>The theory of welded and extended welded knots is a generalization of classical knot theory. Welded (resp. extended welded) knot diagrams include virtual crossings (resp. virtual crossings and wen marks) and are equivalent under an extended set of Reidemeister-type moves. We present a new class of invariants for welded and extended welded knots and links using a multi-skein relation, following Z. Yang's approach for virtual knots. Using this skein-theoretic approach, we find sufficient conditions on the coefficients to obtain invariance under the extended Reidemeister moves appropriate to welded and extended welded links.</description><subject>Invariants</subject><subject>Knot theory</subject><subject>Knots</subject><subject>Links</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw9S3NKcnUDc5OzcxT8MwrSyzKTMwrKVZIyy9SCE_NSUlNUUjMS1FwrShJzQNxoGLeeflARSAZn8y87GIeBta0xJziVF4ozc2g7OYa4uyhW1CUX1iaWlwSn5VfWpQHlIo3MjSwMDc0NTAyNCZOFQAhujoJ</recordid><startdate>20180916</startdate><enddate>20180916</enddate><creator>Backes, N</creator><creator>Kaiser, M</creator><creator>Leafblad, T</creator><creator>Peterson, E I C</creator><creator>Yetter, D N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180916</creationdate><title>Multi-Skein Invariants for Welded and Extended Welded Knots and Links</title><author>Backes, N ; Kaiser, M ; Leafblad, T ; Peterson, E I C ; Yetter, D N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21087150213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Invariants</topic><topic>Knot theory</topic><topic>Knots</topic><topic>Links</topic><toplevel>online_resources</toplevel><creatorcontrib>Backes, N</creatorcontrib><creatorcontrib>Kaiser, M</creatorcontrib><creatorcontrib>Leafblad, T</creatorcontrib><creatorcontrib>Peterson, E I C</creatorcontrib><creatorcontrib>Yetter, D N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Backes, N</au><au>Kaiser, M</au><au>Leafblad, T</au><au>Peterson, E I C</au><au>Yetter, D N</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-Skein Invariants for Welded and Extended Welded Knots and Links</atitle><jtitle>arXiv.org</jtitle><date>2018-09-16</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>The theory of welded and extended welded knots is a generalization of classical knot theory. Welded (resp. extended welded) knot diagrams include virtual crossings (resp. virtual crossings and wen marks) and are equivalent under an extended set of Reidemeister-type moves. We present a new class of invariants for welded and extended welded knots and links using a multi-skein relation, following Z. Yang's approach for virtual knots. Using this skein-theoretic approach, we find sufficient conditions on the coefficients to obtain invariance under the extended Reidemeister moves appropriate to welded and extended welded links.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2108715021
source Free E- Journals
subjects Invariants
Knot theory
Knots
Links
title Multi-Skein Invariants for Welded and Extended Welded Knots and Links
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-Skein%20Invariants%20for%20Welded%20and%20Extended%20Welded%20Knots%20and%20Links&rft.jtitle=arXiv.org&rft.au=Backes,%20N&rft.date=2018-09-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2108715021%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108715021&rft_id=info:pmid/&rfr_iscdi=true