Rank-based approach for estimating correlations in mixed ordinal data
High-dimensional mixed data as a combination of both continuous and ordinal variables are widely seen in many research areas such as genomic studies and survey data analysis. Estimating the underlying correlation among mixed data is hence crucial for further inferring dependence structure. We propos...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Quan, Xiaoyun Booth, James G Wells, Martin T |
description | High-dimensional mixed data as a combination of both continuous and ordinal variables are widely seen in many research areas such as genomic studies and survey data analysis. Estimating the underlying correlation among mixed data is hence crucial for further inferring dependence structure. We propose a semiparametric latent Gaussian copula model for this problem. We start with estimating the association among ternary-continuous mixed data via a rank-based approach and generalize the methodology to p-level-ordinal and continuous mixed data. Concentration rate of the estimator is also provided and proved. At last, we demonstrate the performance of the proposed estimator by extensive simulations and two case studies of real data examples of algorithmic risk score evaluation and cancer patients survival data. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2108713665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2108713665</sourcerecordid><originalsourceid>FETCH-proquest_journals_21087136653</originalsourceid><addsrcrecordid>eNqNzL0KwjAUhuEgCBbtPRxwDqRJ_3apOIt7ObappqZJzWnByzeDF-D0fcPDu2GJVCrjdS7ljqVEoxBClpUsCpWw5oruxe9Iugec5-Cxe8LgA2hazISLcQ_ofAjaxu8dgXEwmU_UPvTGoYUeFzyw7YCWdPrbPTuem9vpwmPwvcZUO_o1RE2tzERdZaosC_Wf-gKY3Tsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108713665</pqid></control><display><type>article</type><title>Rank-based approach for estimating correlations in mixed ordinal data</title><source>Free E- Journals</source><creator>Quan, Xiaoyun ; Booth, James G ; Wells, Martin T</creator><creatorcontrib>Quan, Xiaoyun ; Booth, James G ; Wells, Martin T</creatorcontrib><description>High-dimensional mixed data as a combination of both continuous and ordinal variables are widely seen in many research areas such as genomic studies and survey data analysis. Estimating the underlying correlation among mixed data is hence crucial for further inferring dependence structure. We propose a semiparametric latent Gaussian copula model for this problem. We start with estimating the association among ternary-continuous mixed data via a rank-based approach and generalize the methodology to p-level-ordinal and continuous mixed data. Concentration rate of the estimator is also provided and proved. At last, we demonstrate the performance of the proposed estimator by extensive simulations and two case studies of real data examples of algorithmic risk score evaluation and cancer patients survival data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Continuity (mathematics) ; Correlation analysis ; Data analysis ; Dependence ; Estimation</subject><ispartof>arXiv.org, 2018-09</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Quan, Xiaoyun</creatorcontrib><creatorcontrib>Booth, James G</creatorcontrib><creatorcontrib>Wells, Martin T</creatorcontrib><title>Rank-based approach for estimating correlations in mixed ordinal data</title><title>arXiv.org</title><description>High-dimensional mixed data as a combination of both continuous and ordinal variables are widely seen in many research areas such as genomic studies and survey data analysis. Estimating the underlying correlation among mixed data is hence crucial for further inferring dependence structure. We propose a semiparametric latent Gaussian copula model for this problem. We start with estimating the association among ternary-continuous mixed data via a rank-based approach and generalize the methodology to p-level-ordinal and continuous mixed data. Concentration rate of the estimator is also provided and proved. At last, we demonstrate the performance of the proposed estimator by extensive simulations and two case studies of real data examples of algorithmic risk score evaluation and cancer patients survival data.</description><subject>Computer simulation</subject><subject>Continuity (mathematics)</subject><subject>Correlation analysis</subject><subject>Data analysis</subject><subject>Dependence</subject><subject>Estimation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzL0KwjAUhuEgCBbtPRxwDqRJ_3apOIt7ObappqZJzWnByzeDF-D0fcPDu2GJVCrjdS7ljqVEoxBClpUsCpWw5oruxe9Iugec5-Cxe8LgA2hazISLcQ_ofAjaxu8dgXEwmU_UPvTGoYUeFzyw7YCWdPrbPTuem9vpwmPwvcZUO_o1RE2tzERdZaosC_Wf-gKY3Tsg</recordid><startdate>20180917</startdate><enddate>20180917</enddate><creator>Quan, Xiaoyun</creator><creator>Booth, James G</creator><creator>Wells, Martin T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180917</creationdate><title>Rank-based approach for estimating correlations in mixed ordinal data</title><author>Quan, Xiaoyun ; Booth, James G ; Wells, Martin T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21087136653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Continuity (mathematics)</topic><topic>Correlation analysis</topic><topic>Data analysis</topic><topic>Dependence</topic><topic>Estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Quan, Xiaoyun</creatorcontrib><creatorcontrib>Booth, James G</creatorcontrib><creatorcontrib>Wells, Martin T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quan, Xiaoyun</au><au>Booth, James G</au><au>Wells, Martin T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Rank-based approach for estimating correlations in mixed ordinal data</atitle><jtitle>arXiv.org</jtitle><date>2018-09-17</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>High-dimensional mixed data as a combination of both continuous and ordinal variables are widely seen in many research areas such as genomic studies and survey data analysis. Estimating the underlying correlation among mixed data is hence crucial for further inferring dependence structure. We propose a semiparametric latent Gaussian copula model for this problem. We start with estimating the association among ternary-continuous mixed data via a rank-based approach and generalize the methodology to p-level-ordinal and continuous mixed data. Concentration rate of the estimator is also provided and proved. At last, we demonstrate the performance of the proposed estimator by extensive simulations and two case studies of real data examples of algorithmic risk score evaluation and cancer patients survival data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2108713665 |
source | Free E- Journals |
subjects | Computer simulation Continuity (mathematics) Correlation analysis Data analysis Dependence Estimation |
title | Rank-based approach for estimating correlations in mixed ordinal data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Rank-based%20approach%20for%20estimating%20correlations%20in%20mixed%20ordinal%20data&rft.jtitle=arXiv.org&rft.au=Quan,%20Xiaoyun&rft.date=2018-09-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2108713665%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108713665&rft_id=info:pmid/&rfr_iscdi=true |