Estimates for the generalized cross-validation function via an extrapolation and statistical approach
Generalized cross-validation (GCV) is a popular tool for specifying the tuning parameter in linear regression model or equivalently the regularization parameter in Tikhonov regularization. In this work, we are concerned with the estimation and minimization of the GCV function by using a combination...
Gespeichert in:
Veröffentlicht in: | Calcolo 2018-09, Vol.55 (3), p.1-25, Article 24 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Calcolo |
container_volume | 55 |
creator | Mitrouli, Marilena Roupa, Paraskevi |
description | Generalized cross-validation (GCV) is a popular tool for specifying the tuning parameter in linear regression model or equivalently the regularization parameter in Tikhonov regularization. In this work, we are concerned with the estimation and minimization of the GCV function by using a combination of an extrapolation procedure and a statistical approach. In particular, we derive families of estimates for the GCV function. By minimizing the estimated GCV function over a grid of values, a GCV estimate of the regularization parameter is achieved. We present several numerical examples to illustrate the effectiveness of the derived families of estimates for approximating the regularization parameter for several linear discrete ill-posed problems. |
doi_str_mv | 10.1007/s10092-018-0266-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2108403768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2108403768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b9d1497c38e2a6208fe3e538392d5f9c2c737745a0ad00704a50f2862029077a3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTaMH4mdJarKQ0JiA2trcJw2VUiC7VbA1-M2SKzY2DOae-9oDiGXHK45gL6J-a0EA24YiLJk8ojMOBclK5RUx2QGAHlSCnVKzmLc5LZQRs2IX8bUvmPykTZDoGnt6cr3PmDXfvuaujDEyHa5qzG1Q0-bbe8Oxa5Fij31nyngOHTTFPuaxpTrHOqwoziOYUC3PicnDXbRX_z-c_J6t3xZPLCn5_vHxe0Tc5KXib1VNVeVdtJ4gaUA03jpC2lkJeqiqZxwWmqtCgSs89GgsIBGmKwUFWiNck6upty89mPrY7KbYRv6vNIKDkaB1KXJKj6pDtcF39gxZAbhy3Kwe5p2omkzTbunaWX2iMkTs7Zf-fCX_L_pB5LJd-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108403768</pqid></control><display><type>article</type><title>Estimates for the generalized cross-validation function via an extrapolation and statistical approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mitrouli, Marilena ; Roupa, Paraskevi</creator><creatorcontrib>Mitrouli, Marilena ; Roupa, Paraskevi</creatorcontrib><description>Generalized cross-validation (GCV) is a popular tool for specifying the tuning parameter in linear regression model or equivalently the regularization parameter in Tikhonov regularization. In this work, we are concerned with the estimation and minimization of the GCV function by using a combination of an extrapolation procedure and a statistical approach. In particular, we derive families of estimates for the GCV function. By minimizing the estimated GCV function over a grid of values, a GCV estimate of the regularization parameter is achieved. We present several numerical examples to illustrate the effectiveness of the derived families of estimates for approximating the regularization parameter for several linear discrete ill-posed problems.</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-018-0266-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Estimates ; Extrapolation ; Ill posed problems ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Parameter estimation ; Regression models ; Regularization ; Statistical analysis ; Theory of Computation</subject><ispartof>Calcolo, 2018-09, Vol.55 (3), p.1-25, Article 24</ispartof><rights>Istituto di Informatica e Telematica del Consiglio Nazionale delle Ricerche 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b9d1497c38e2a6208fe3e538392d5f9c2c737745a0ad00704a50f2862029077a3</citedby><cites>FETCH-LOGICAL-c316t-b9d1497c38e2a6208fe3e538392d5f9c2c737745a0ad00704a50f2862029077a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10092-018-0266-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10092-018-0266-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Mitrouli, Marilena</creatorcontrib><creatorcontrib>Roupa, Paraskevi</creatorcontrib><title>Estimates for the generalized cross-validation function via an extrapolation and statistical approach</title><title>Calcolo</title><addtitle>Calcolo</addtitle><description>Generalized cross-validation (GCV) is a popular tool for specifying the tuning parameter in linear regression model or equivalently the regularization parameter in Tikhonov regularization. In this work, we are concerned with the estimation and minimization of the GCV function by using a combination of an extrapolation procedure and a statistical approach. In particular, we derive families of estimates for the GCV function. By minimizing the estimated GCV function over a grid of values, a GCV estimate of the regularization parameter is achieved. We present several numerical examples to illustrate the effectiveness of the derived families of estimates for approximating the regularization parameter for several linear discrete ill-posed problems.</description><subject>Estimates</subject><subject>Extrapolation</subject><subject>Ill posed problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Parameter estimation</subject><subject>Regression models</subject><subject>Regularization</subject><subject>Statistical analysis</subject><subject>Theory of Computation</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssTaMH4mdJarKQ0JiA2trcJw2VUiC7VbA1-M2SKzY2DOae-9oDiGXHK45gL6J-a0EA24YiLJk8ojMOBclK5RUx2QGAHlSCnVKzmLc5LZQRs2IX8bUvmPykTZDoGnt6cr3PmDXfvuaujDEyHa5qzG1Q0-bbe8Oxa5Fij31nyngOHTTFPuaxpTrHOqwoziOYUC3PicnDXbRX_z-c_J6t3xZPLCn5_vHxe0Tc5KXib1VNVeVdtJ4gaUA03jpC2lkJeqiqZxwWmqtCgSs89GgsIBGmKwUFWiNck6upty89mPrY7KbYRv6vNIKDkaB1KXJKj6pDtcF39gxZAbhy3Kwe5p2omkzTbunaWX2iMkTs7Zf-fCX_L_pB5LJd-8</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Mitrouli, Marilena</creator><creator>Roupa, Paraskevi</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180901</creationdate><title>Estimates for the generalized cross-validation function via an extrapolation and statistical approach</title><author>Mitrouli, Marilena ; Roupa, Paraskevi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b9d1497c38e2a6208fe3e538392d5f9c2c737745a0ad00704a50f2862029077a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Estimates</topic><topic>Extrapolation</topic><topic>Ill posed problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Parameter estimation</topic><topic>Regression models</topic><topic>Regularization</topic><topic>Statistical analysis</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitrouli, Marilena</creatorcontrib><creatorcontrib>Roupa, Paraskevi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitrouli, Marilena</au><au>Roupa, Paraskevi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates for the generalized cross-validation function via an extrapolation and statistical approach</atitle><jtitle>Calcolo</jtitle><stitle>Calcolo</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>55</volume><issue>3</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><artnum>24</artnum><issn>0008-0624</issn><eissn>1126-5434</eissn><abstract>Generalized cross-validation (GCV) is a popular tool for specifying the tuning parameter in linear regression model or equivalently the regularization parameter in Tikhonov regularization. In this work, we are concerned with the estimation and minimization of the GCV function by using a combination of an extrapolation procedure and a statistical approach. In particular, we derive families of estimates for the GCV function. By minimizing the estimated GCV function over a grid of values, a GCV estimate of the regularization parameter is achieved. We present several numerical examples to illustrate the effectiveness of the derived families of estimates for approximating the regularization parameter for several linear discrete ill-posed problems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10092-018-0266-3</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-0624 |
ispartof | Calcolo, 2018-09, Vol.55 (3), p.1-25, Article 24 |
issn | 0008-0624 1126-5434 |
language | eng |
recordid | cdi_proquest_journals_2108403768 |
source | SpringerLink Journals - AutoHoldings |
subjects | Estimates Extrapolation Ill posed problems Mathematics Mathematics and Statistics Numerical Analysis Parameter estimation Regression models Regularization Statistical analysis Theory of Computation |
title | Estimates for the generalized cross-validation function via an extrapolation and statistical approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20for%20the%20generalized%20cross-validation%20function%20via%20an%20extrapolation%20and%20statistical%20approach&rft.jtitle=Calcolo&rft.au=Mitrouli,%20Marilena&rft.date=2018-09-01&rft.volume=55&rft.issue=3&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.artnum=24&rft.issn=0008-0624&rft.eissn=1126-5434&rft_id=info:doi/10.1007/s10092-018-0266-3&rft_dat=%3Cproquest_cross%3E2108403768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108403768&rft_id=info:pmid/&rfr_iscdi=true |