Estimates for the generalized cross-validation function via an extrapolation and statistical approach

Generalized cross-validation (GCV) is a popular tool for specifying the tuning parameter in linear regression model or equivalently the regularization parameter in Tikhonov regularization. In this work, we are concerned with the estimation and minimization of the GCV function by using a combination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcolo 2018-09, Vol.55 (3), p.1-25, Article 24
Hauptverfasser: Mitrouli, Marilena, Roupa, Paraskevi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 3
container_start_page 1
container_title Calcolo
container_volume 55
creator Mitrouli, Marilena
Roupa, Paraskevi
description Generalized cross-validation (GCV) is a popular tool for specifying the tuning parameter in linear regression model or equivalently the regularization parameter in Tikhonov regularization. In this work, we are concerned with the estimation and minimization of the GCV function by using a combination of an extrapolation procedure and a statistical approach. In particular, we derive families of estimates for the GCV function. By minimizing the estimated GCV function over a grid of values, a GCV estimate of the regularization parameter is achieved. We present several numerical examples to illustrate the effectiveness of the derived families of estimates for approximating the regularization parameter for several linear discrete ill-posed problems.
doi_str_mv 10.1007/s10092-018-0266-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2108403768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2108403768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b9d1497c38e2a6208fe3e538392d5f9c2c737745a0ad00704a50f2862029077a3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTaMH4mdJarKQ0JiA2trcJw2VUiC7VbA1-M2SKzY2DOae-9oDiGXHK45gL6J-a0EA24YiLJk8ojMOBclK5RUx2QGAHlSCnVKzmLc5LZQRs2IX8bUvmPykTZDoGnt6cr3PmDXfvuaujDEyHa5qzG1Q0-bbe8Oxa5Fij31nyngOHTTFPuaxpTrHOqwoziOYUC3PicnDXbRX_z-c_J6t3xZPLCn5_vHxe0Tc5KXib1VNVeVdtJ4gaUA03jpC2lkJeqiqZxwWmqtCgSs89GgsIBGmKwUFWiNck6upty89mPrY7KbYRv6vNIKDkaB1KXJKj6pDtcF39gxZAbhy3Kwe5p2omkzTbunaWX2iMkTs7Zf-fCX_L_pB5LJd-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108403768</pqid></control><display><type>article</type><title>Estimates for the generalized cross-validation function via an extrapolation and statistical approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mitrouli, Marilena ; Roupa, Paraskevi</creator><creatorcontrib>Mitrouli, Marilena ; Roupa, Paraskevi</creatorcontrib><description>Generalized cross-validation (GCV) is a popular tool for specifying the tuning parameter in linear regression model or equivalently the regularization parameter in Tikhonov regularization. In this work, we are concerned with the estimation and minimization of the GCV function by using a combination of an extrapolation procedure and a statistical approach. In particular, we derive families of estimates for the GCV function. By minimizing the estimated GCV function over a grid of values, a GCV estimate of the regularization parameter is achieved. We present several numerical examples to illustrate the effectiveness of the derived families of estimates for approximating the regularization parameter for several linear discrete ill-posed problems.</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-018-0266-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Estimates ; Extrapolation ; Ill posed problems ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Parameter estimation ; Regression models ; Regularization ; Statistical analysis ; Theory of Computation</subject><ispartof>Calcolo, 2018-09, Vol.55 (3), p.1-25, Article 24</ispartof><rights>Istituto di Informatica e Telematica del Consiglio Nazionale delle Ricerche 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b9d1497c38e2a6208fe3e538392d5f9c2c737745a0ad00704a50f2862029077a3</citedby><cites>FETCH-LOGICAL-c316t-b9d1497c38e2a6208fe3e538392d5f9c2c737745a0ad00704a50f2862029077a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10092-018-0266-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10092-018-0266-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Mitrouli, Marilena</creatorcontrib><creatorcontrib>Roupa, Paraskevi</creatorcontrib><title>Estimates for the generalized cross-validation function via an extrapolation and statistical approach</title><title>Calcolo</title><addtitle>Calcolo</addtitle><description>Generalized cross-validation (GCV) is a popular tool for specifying the tuning parameter in linear regression model or equivalently the regularization parameter in Tikhonov regularization. In this work, we are concerned with the estimation and minimization of the GCV function by using a combination of an extrapolation procedure and a statistical approach. In particular, we derive families of estimates for the GCV function. By minimizing the estimated GCV function over a grid of values, a GCV estimate of the regularization parameter is achieved. We present several numerical examples to illustrate the effectiveness of the derived families of estimates for approximating the regularization parameter for several linear discrete ill-posed problems.</description><subject>Estimates</subject><subject>Extrapolation</subject><subject>Ill posed problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Parameter estimation</subject><subject>Regression models</subject><subject>Regularization</subject><subject>Statistical analysis</subject><subject>Theory of Computation</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssTaMH4mdJarKQ0JiA2trcJw2VUiC7VbA1-M2SKzY2DOae-9oDiGXHK45gL6J-a0EA24YiLJk8ojMOBclK5RUx2QGAHlSCnVKzmLc5LZQRs2IX8bUvmPykTZDoGnt6cr3PmDXfvuaujDEyHa5qzG1Q0-bbe8Oxa5Fij31nyngOHTTFPuaxpTrHOqwoziOYUC3PicnDXbRX_z-c_J6t3xZPLCn5_vHxe0Tc5KXib1VNVeVdtJ4gaUA03jpC2lkJeqiqZxwWmqtCgSs89GgsIBGmKwUFWiNck6upty89mPrY7KbYRv6vNIKDkaB1KXJKj6pDtcF39gxZAbhy3Kwe5p2omkzTbunaWX2iMkTs7Zf-fCX_L_pB5LJd-8</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Mitrouli, Marilena</creator><creator>Roupa, Paraskevi</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180901</creationdate><title>Estimates for the generalized cross-validation function via an extrapolation and statistical approach</title><author>Mitrouli, Marilena ; Roupa, Paraskevi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b9d1497c38e2a6208fe3e538392d5f9c2c737745a0ad00704a50f2862029077a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Estimates</topic><topic>Extrapolation</topic><topic>Ill posed problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Parameter estimation</topic><topic>Regression models</topic><topic>Regularization</topic><topic>Statistical analysis</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitrouli, Marilena</creatorcontrib><creatorcontrib>Roupa, Paraskevi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitrouli, Marilena</au><au>Roupa, Paraskevi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates for the generalized cross-validation function via an extrapolation and statistical approach</atitle><jtitle>Calcolo</jtitle><stitle>Calcolo</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>55</volume><issue>3</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><artnum>24</artnum><issn>0008-0624</issn><eissn>1126-5434</eissn><abstract>Generalized cross-validation (GCV) is a popular tool for specifying the tuning parameter in linear regression model or equivalently the regularization parameter in Tikhonov regularization. In this work, we are concerned with the estimation and minimization of the GCV function by using a combination of an extrapolation procedure and a statistical approach. In particular, we derive families of estimates for the GCV function. By minimizing the estimated GCV function over a grid of values, a GCV estimate of the regularization parameter is achieved. We present several numerical examples to illustrate the effectiveness of the derived families of estimates for approximating the regularization parameter for several linear discrete ill-posed problems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10092-018-0266-3</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-0624
ispartof Calcolo, 2018-09, Vol.55 (3), p.1-25, Article 24
issn 0008-0624
1126-5434
language eng
recordid cdi_proquest_journals_2108403768
source SpringerLink Journals - AutoHoldings
subjects Estimates
Extrapolation
Ill posed problems
Mathematics
Mathematics and Statistics
Numerical Analysis
Parameter estimation
Regression models
Regularization
Statistical analysis
Theory of Computation
title Estimates for the generalized cross-validation function via an extrapolation and statistical approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20for%20the%20generalized%20cross-validation%20function%20via%20an%20extrapolation%20and%20statistical%20approach&rft.jtitle=Calcolo&rft.au=Mitrouli,%20Marilena&rft.date=2018-09-01&rft.volume=55&rft.issue=3&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.artnum=24&rft.issn=0008-0624&rft.eissn=1126-5434&rft_id=info:doi/10.1007/s10092-018-0266-3&rft_dat=%3Cproquest_cross%3E2108403768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108403768&rft_id=info:pmid/&rfr_iscdi=true