Phytoplankton production after the collapse of the Larsen A Ice Shelf, Antarctica

Part of the Larsen A Ice Shelf (64°15′S to 74°15′S) collapsed during January 1995. A first oceanographic and biological data set from the newly free waters was obtained during December 1996. Typical shelf waters with temperatures near and below the freezing point were found. A nutrient-rich water ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polar biology 2009-10, Vol.32 (10), p.1435-1446
Hauptverfasser: Bertolin, M. Lila, Schloss, Irene R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1446
container_issue 10
container_start_page 1435
container_title Polar biology
container_volume 32
creator Bertolin, M. Lila
Schloss, Irene R.
description Part of the Larsen A Ice Shelf (64°15′S to 74°15′S) collapsed during January 1995. A first oceanographic and biological data set from the newly free waters was obtained during December 1996. Typical shelf waters with temperatures near and below the freezing point were found. A nutrient-rich water mass (max: PO 4 3− 1.80 μmol L −1 and NO 3 − 27.64 μmol L −1 ) was found between 70 and 200 m depth. Chlorophyll- a (Chl- a ) values (max 14.24 μg L −1 ) were high; surface oxygen saturation ranged between 86 and 148%. Diatoms of the genera Nitzschia and Navicula and the prymnesiophyte Phaeocystis sp. were the most abundant taxa found. Mean daily primary production (Pc) estimated from nutrient consumption was 14.80 ± 0.17 mgC m −3  day −1 . Pc was significantly correlated with total diatom abundance and Chl- a . Calculated Δ p CO 2 (difference of the CO 2 partial pressure between surface seawater and the atmosphere) was –30.5 μatm, which could have contributed to a net CO 2 flux from the atmosphere to the sea and suggests the area has been a CO 2 sink during the studied period. High phytoplankton biomass and production values were found in this freshly open area, suggesting its importance for biological CO 2 pumping.
doi_str_mv 10.1007/s00300-009-0638-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_210838087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895006741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-91d80827891c6a63cc51d04c95acb5fc4e2c81e07db81fe3a9defe72e0660073</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwsJG4Y1k7iJMeq4qdSJUD0brnOmraEJNiu1L49DqngxMlr7cy3u0PIJYdbDpDfeYAEgAGUDGRSsN0RGfE0EUxAJo_JCHIhWAoSTsmZ9xsAnsu0HJHXl9U-tF2tm4_QNrRzbbU1YR1LbQM6GlZITVvXuvNIW_vzn2vnsaETOjNI31ZY2xs6aYJ20Wj0OTmxuvZ4cXjHZPFwv5g-sfnz42w6mTOTpFlgJa8KKERelNxILRNjMl5BaspMm2VmTYrCFBwhr5YFt5joskKLuUCQMh6cjMnVgI0rf23RB7Vpt66JE5XgUCQR3ov4IDKu9d6hVZ1bf2q3VxxUn5saclMxN9XnpnbRc30Aa290bZ1uzNr_GoXop6c9Www6H1vNO7q_Bf6HfwMpIX0d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210838087</pqid></control><display><type>article</type><title>Phytoplankton production after the collapse of the Larsen A Ice Shelf, Antarctica</title><source>SpringerLink Journals</source><creator>Bertolin, M. Lila ; Schloss, Irene R.</creator><creatorcontrib>Bertolin, M. Lila ; Schloss, Irene R.</creatorcontrib><description>Part of the Larsen A Ice Shelf (64°15′S to 74°15′S) collapsed during January 1995. A first oceanographic and biological data set from the newly free waters was obtained during December 1996. Typical shelf waters with temperatures near and below the freezing point were found. A nutrient-rich water mass (max: PO 4 3− 1.80 μmol L −1 and NO 3 − 27.64 μmol L −1 ) was found between 70 and 200 m depth. Chlorophyll- a (Chl- a ) values (max 14.24 μg L −1 ) were high; surface oxygen saturation ranged between 86 and 148%. Diatoms of the genera Nitzschia and Navicula and the prymnesiophyte Phaeocystis sp. were the most abundant taxa found. Mean daily primary production (Pc) estimated from nutrient consumption was 14.80 ± 0.17 mgC m −3  day −1 . Pc was significantly correlated with total diatom abundance and Chl- a . Calculated Δ p CO 2 (difference of the CO 2 partial pressure between surface seawater and the atmosphere) was –30.5 μatm, which could have contributed to a net CO 2 flux from the atmosphere to the sea and suggests the area has been a CO 2 sink during the studied period. High phytoplankton biomass and production values were found in this freshly open area, suggesting its importance for biological CO 2 pumping.</description><identifier>ISSN: 0722-4060</identifier><identifier>EISSN: 1432-2056</identifier><identifier>DOI: 10.1007/s00300-009-0638-x</identifier><identifier>CODEN: POBIDP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Atmosphere ; Biological and medical sciences ; Biomedical and Life Sciences ; Carbon dioxide ; Climate change ; Ecology ; Freezing ; Freezing point ; Fundamental and applied biological sciences. Psychology ; Geochemistry ; Greenhouse gases ; Ice shelves ; Life Sciences ; Microbiology ; Nutrients ; Oceanography ; Original Paper ; Particular ecosystems ; Phytoplankton ; Plankton ; Plant Sciences ; Primary production ; Seawater ; Synecology ; Zoology</subject><ispartof>Polar biology, 2009-10, Vol.32 (10), p.1435-1446</ispartof><rights>Springer-Verlag 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-91d80827891c6a63cc51d04c95acb5fc4e2c81e07db81fe3a9defe72e0660073</citedby><cites>FETCH-LOGICAL-c345t-91d80827891c6a63cc51d04c95acb5fc4e2c81e07db81fe3a9defe72e0660073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00300-009-0638-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00300-009-0638-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22007347$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bertolin, M. Lila</creatorcontrib><creatorcontrib>Schloss, Irene R.</creatorcontrib><title>Phytoplankton production after the collapse of the Larsen A Ice Shelf, Antarctica</title><title>Polar biology</title><addtitle>Polar Biol</addtitle><description>Part of the Larsen A Ice Shelf (64°15′S to 74°15′S) collapsed during January 1995. A first oceanographic and biological data set from the newly free waters was obtained during December 1996. Typical shelf waters with temperatures near and below the freezing point were found. A nutrient-rich water mass (max: PO 4 3− 1.80 μmol L −1 and NO 3 − 27.64 μmol L −1 ) was found between 70 and 200 m depth. Chlorophyll- a (Chl- a ) values (max 14.24 μg L −1 ) were high; surface oxygen saturation ranged between 86 and 148%. Diatoms of the genera Nitzschia and Navicula and the prymnesiophyte Phaeocystis sp. were the most abundant taxa found. Mean daily primary production (Pc) estimated from nutrient consumption was 14.80 ± 0.17 mgC m −3  day −1 . Pc was significantly correlated with total diatom abundance and Chl- a . Calculated Δ p CO 2 (difference of the CO 2 partial pressure between surface seawater and the atmosphere) was –30.5 μatm, which could have contributed to a net CO 2 flux from the atmosphere to the sea and suggests the area has been a CO 2 sink during the studied period. High phytoplankton biomass and production values were found in this freshly open area, suggesting its importance for biological CO 2 pumping.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Atmosphere</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Ecology</subject><subject>Freezing</subject><subject>Freezing point</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geochemistry</subject><subject>Greenhouse gases</subject><subject>Ice shelves</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Nutrients</subject><subject>Oceanography</subject><subject>Original Paper</subject><subject>Particular ecosystems</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Plant Sciences</subject><subject>Primary production</subject><subject>Seawater</subject><subject>Synecology</subject><subject>Zoology</subject><issn>0722-4060</issn><issn>1432-2056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1OwzAQhC0EEqXwANwsJG4Y1k7iJMeq4qdSJUD0brnOmraEJNiu1L49DqngxMlr7cy3u0PIJYdbDpDfeYAEgAGUDGRSsN0RGfE0EUxAJo_JCHIhWAoSTsmZ9xsAnsu0HJHXl9U-tF2tm4_QNrRzbbU1YR1LbQM6GlZITVvXuvNIW_vzn2vnsaETOjNI31ZY2xs6aYJ20Wj0OTmxuvZ4cXjHZPFwv5g-sfnz42w6mTOTpFlgJa8KKERelNxILRNjMl5BaspMm2VmTYrCFBwhr5YFt5joskKLuUCQMh6cjMnVgI0rf23RB7Vpt66JE5XgUCQR3ov4IDKu9d6hVZ1bf2q3VxxUn5saclMxN9XnpnbRc30Aa290bZ1uzNr_GoXop6c9Www6H1vNO7q_Bf6HfwMpIX0d</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Bertolin, M. Lila</creator><creator>Schloss, Irene R.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20091001</creationdate><title>Phytoplankton production after the collapse of the Larsen A Ice Shelf, Antarctica</title><author>Bertolin, M. Lila ; Schloss, Irene R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-91d80827891c6a63cc51d04c95acb5fc4e2c81e07db81fe3a9defe72e0660073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Atmosphere</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Ecology</topic><topic>Freezing</topic><topic>Freezing point</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geochemistry</topic><topic>Greenhouse gases</topic><topic>Ice shelves</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Nutrients</topic><topic>Oceanography</topic><topic>Original Paper</topic><topic>Particular ecosystems</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Plant Sciences</topic><topic>Primary production</topic><topic>Seawater</topic><topic>Synecology</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertolin, M. Lila</creatorcontrib><creatorcontrib>Schloss, Irene R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polar biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertolin, M. Lila</au><au>Schloss, Irene R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytoplankton production after the collapse of the Larsen A Ice Shelf, Antarctica</atitle><jtitle>Polar biology</jtitle><stitle>Polar Biol</stitle><date>2009-10-01</date><risdate>2009</risdate><volume>32</volume><issue>10</issue><spage>1435</spage><epage>1446</epage><pages>1435-1446</pages><issn>0722-4060</issn><eissn>1432-2056</eissn><coden>POBIDP</coden><abstract>Part of the Larsen A Ice Shelf (64°15′S to 74°15′S) collapsed during January 1995. A first oceanographic and biological data set from the newly free waters was obtained during December 1996. Typical shelf waters with temperatures near and below the freezing point were found. A nutrient-rich water mass (max: PO 4 3− 1.80 μmol L −1 and NO 3 − 27.64 μmol L −1 ) was found between 70 and 200 m depth. Chlorophyll- a (Chl- a ) values (max 14.24 μg L −1 ) were high; surface oxygen saturation ranged between 86 and 148%. Diatoms of the genera Nitzschia and Navicula and the prymnesiophyte Phaeocystis sp. were the most abundant taxa found. Mean daily primary production (Pc) estimated from nutrient consumption was 14.80 ± 0.17 mgC m −3  day −1 . Pc was significantly correlated with total diatom abundance and Chl- a . Calculated Δ p CO 2 (difference of the CO 2 partial pressure between surface seawater and the atmosphere) was –30.5 μatm, which could have contributed to a net CO 2 flux from the atmosphere to the sea and suggests the area has been a CO 2 sink during the studied period. High phytoplankton biomass and production values were found in this freshly open area, suggesting its importance for biological CO 2 pumping.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00300-009-0638-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0722-4060
ispartof Polar biology, 2009-10, Vol.32 (10), p.1435-1446
issn 0722-4060
1432-2056
language eng
recordid cdi_proquest_journals_210838087
source SpringerLink Journals
subjects Animal and plant ecology
Animal, plant and microbial ecology
Atmosphere
Biological and medical sciences
Biomedical and Life Sciences
Carbon dioxide
Climate change
Ecology
Freezing
Freezing point
Fundamental and applied biological sciences. Psychology
Geochemistry
Greenhouse gases
Ice shelves
Life Sciences
Microbiology
Nutrients
Oceanography
Original Paper
Particular ecosystems
Phytoplankton
Plankton
Plant Sciences
Primary production
Seawater
Synecology
Zoology
title Phytoplankton production after the collapse of the Larsen A Ice Shelf, Antarctica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytoplankton%20production%20after%20the%20collapse%20of%20the%20Larsen%20A%20Ice%20Shelf,%20Antarctica&rft.jtitle=Polar%20biology&rft.au=Bertolin,%20M.%20Lila&rft.date=2009-10-01&rft.volume=32&rft.issue=10&rft.spage=1435&rft.epage=1446&rft.pages=1435-1446&rft.issn=0722-4060&rft.eissn=1432-2056&rft.coden=POBIDP&rft_id=info:doi/10.1007/s00300-009-0638-x&rft_dat=%3Cproquest_cross%3E1895006741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210838087&rft_id=info:pmid/&rfr_iscdi=true