Cumulative solar irradiance and potential large-scale sea ice algae distribution off East Antarctica (30°E-150°E)
We present a computational model of the large-scale cumulative light exposure of sea ice in the Southern Ocean off East Antarctica (30°E-150°E). The model uses remotely sensed or modelled sea ice concentration, snow depth over sea ice, and solar irradiance data, and tracks sea ice motion over the se...
Gespeichert in:
Veröffentlicht in: | Polar biology 2009-03, Vol.32 (3), p.443-452 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 452 |
---|---|
container_issue | 3 |
container_start_page | 443 |
container_title | Polar biology |
container_volume | 32 |
creator | Raymond, Ben Meiners, K Fowler, C. W Pasquer, B Williams, G. D Nicol, S |
description | We present a computational model of the large-scale cumulative light exposure of sea ice in the Southern Ocean off East Antarctica (30°E-150°E). The model uses remotely sensed or modelled sea ice concentration, snow depth over sea ice, and solar irradiance data, and tracks sea ice motion over the season of interest in order to calculate the cumulative exposure of the ice field to photosynthetically active radiation (PAR). Light is the limiting factor to sea ice algal growth over winter and early spring, and so the results have implications for the estimation of algal biomass in East Antarctica. The model results indicate that highly light-exposed ice is restricted to within a few degrees of the coast in the eastern part of the study region, but extends much further north in the 30°E-100°E sector. The relative influences of sea ice motion, solar flux, and snow depth variations on interannual variations in model predictions were evaluated. The model estimates of cumulative PAR were found to correlate with satellite estimates of subsequent open-water chlorophyll-a concentration, consistent with the notion that sea ice algae can provide inocula for phytoplankton blooms. |
doi_str_mv | 10.1007/s00300-008-0538-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_210832983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895009731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-e1404eb807d13810791bdd2985abebc429817dd6dfae027e8dd661ccb25c76833</originalsourceid><addsrcrecordid>eNp9kE1rFTEUhoMoeK3-AFcGQbCL6Dn5mI9luVytUOii7TqcyWQuKdOZa5IR-q_6G_xlZpiiO1fnwHneN-Fh7D3CFwSovyYABSAAGgFGNcK8YDvUSgoJpnrJdlBLKTRU8Jq9SekeAOtKtzuW9svDMlIOvzxP80iRhxipDzQ5z2nq-WnOfsqBRl6ORy-So7GgnnhYifFInvch5Ri6JYd54vMw8AOlzC-mTNHl4Ih_VvD76SDQrOP8LXs10Jj8u-d5xu6-HW73l-Lq-vuP_cWVcFqZLDxq0L5roO5RNQh1i13fy7Yx1PnO6bJh3fdVP5AHWfum7BU610nj6qpR6ox93HpPcf65-JTt_bzEqTxpJUKjSsEK4Qa5OKcU_WBPMTxQfLQIdlVrN7W2qLWrWmtK5tNzMa06hlhshfQ3KBE1aoOFkxuXymk6-vjvA_8r_7CFBpotHWMpvruRgArQtKpqtfoDulySYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210832983</pqid></control><display><type>article</type><title>Cumulative solar irradiance and potential large-scale sea ice algae distribution off East Antarctica (30°E-150°E)</title><source>SpringerLink Journals</source><creator>Raymond, Ben ; Meiners, K ; Fowler, C. W ; Pasquer, B ; Williams, G. D ; Nicol, S</creator><creatorcontrib>Raymond, Ben ; Meiners, K ; Fowler, C. W ; Pasquer, B ; Williams, G. D ; Nicol, S</creatorcontrib><description>We present a computational model of the large-scale cumulative light exposure of sea ice in the Southern Ocean off East Antarctica (30°E-150°E). The model uses remotely sensed or modelled sea ice concentration, snow depth over sea ice, and solar irradiance data, and tracks sea ice motion over the season of interest in order to calculate the cumulative exposure of the ice field to photosynthetically active radiation (PAR). Light is the limiting factor to sea ice algal growth over winter and early spring, and so the results have implications for the estimation of algal biomass in East Antarctica. The model results indicate that highly light-exposed ice is restricted to within a few degrees of the coast in the eastern part of the study region, but extends much further north in the 30°E-100°E sector. The relative influences of sea ice motion, solar flux, and snow depth variations on interannual variations in model predictions were evaluated. The model estimates of cumulative PAR were found to correlate with satellite estimates of subsequent open-water chlorophyll-a concentration, consistent with the notion that sea ice algae can provide inocula for phytoplankton blooms.</description><identifier>ISSN: 0722-4060</identifier><identifier>EISSN: 1432-2056</identifier><identifier>DOI: 10.1007/s00300-008-0538-5</identifier><identifier>CODEN: POBIDP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Algae ; Algal growth ; Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; Biomedical and Life Sciences ; Computer based modeling ; Ecology ; Fundamental and applied biological sciences. Psychology ; Ice ; Life Sciences ; Light ; Microbiology ; Oceanography ; Original Paper ; Particular ecosystems ; Phytoplankton ; Plant Sciences ; Sea ice ; Snow ; Snow depth ; Synecology ; Zoology</subject><ispartof>Polar biology, 2009-03, Vol.32 (3), p.443-452</ispartof><rights>Springer-Verlag 2008</rights><rights>2009 INIST-CNRS</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-e1404eb807d13810791bdd2985abebc429817dd6dfae027e8dd661ccb25c76833</citedby><cites>FETCH-LOGICAL-c435t-e1404eb807d13810791bdd2985abebc429817dd6dfae027e8dd661ccb25c76833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00300-008-0538-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00300-008-0538-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21141451$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Raymond, Ben</creatorcontrib><creatorcontrib>Meiners, K</creatorcontrib><creatorcontrib>Fowler, C. W</creatorcontrib><creatorcontrib>Pasquer, B</creatorcontrib><creatorcontrib>Williams, G. D</creatorcontrib><creatorcontrib>Nicol, S</creatorcontrib><title>Cumulative solar irradiance and potential large-scale sea ice algae distribution off East Antarctica (30°E-150°E)</title><title>Polar biology</title><addtitle>Polar Biol</addtitle><description>We present a computational model of the large-scale cumulative light exposure of sea ice in the Southern Ocean off East Antarctica (30°E-150°E). The model uses remotely sensed or modelled sea ice concentration, snow depth over sea ice, and solar irradiance data, and tracks sea ice motion over the season of interest in order to calculate the cumulative exposure of the ice field to photosynthetically active radiation (PAR). Light is the limiting factor to sea ice algal growth over winter and early spring, and so the results have implications for the estimation of algal biomass in East Antarctica. The model results indicate that highly light-exposed ice is restricted to within a few degrees of the coast in the eastern part of the study region, but extends much further north in the 30°E-100°E sector. The relative influences of sea ice motion, solar flux, and snow depth variations on interannual variations in model predictions were evaluated. The model estimates of cumulative PAR were found to correlate with satellite estimates of subsequent open-water chlorophyll-a concentration, consistent with the notion that sea ice algae can provide inocula for phytoplankton blooms.</description><subject>Algae</subject><subject>Algal growth</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Computer based modeling</subject><subject>Ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ice</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Microbiology</subject><subject>Oceanography</subject><subject>Original Paper</subject><subject>Particular ecosystems</subject><subject>Phytoplankton</subject><subject>Plant Sciences</subject><subject>Sea ice</subject><subject>Snow</subject><subject>Snow depth</subject><subject>Synecology</subject><subject>Zoology</subject><issn>0722-4060</issn><issn>1432-2056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1rFTEUhoMoeK3-AFcGQbCL6Dn5mI9luVytUOii7TqcyWQuKdOZa5IR-q_6G_xlZpiiO1fnwHneN-Fh7D3CFwSovyYABSAAGgFGNcK8YDvUSgoJpnrJdlBLKTRU8Jq9SekeAOtKtzuW9svDMlIOvzxP80iRhxipDzQ5z2nq-WnOfsqBRl6ORy-So7GgnnhYifFInvch5Ri6JYd54vMw8AOlzC-mTNHl4Ih_VvD76SDQrOP8LXs10Jj8u-d5xu6-HW73l-Lq-vuP_cWVcFqZLDxq0L5roO5RNQh1i13fy7Yx1PnO6bJh3fdVP5AHWfum7BU610nj6qpR6ox93HpPcf65-JTt_bzEqTxpJUKjSsEK4Qa5OKcU_WBPMTxQfLQIdlVrN7W2qLWrWmtK5tNzMa06hlhshfQ3KBE1aoOFkxuXymk6-vjvA_8r_7CFBpotHWMpvruRgArQtKpqtfoDulySYQ</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Raymond, Ben</creator><creator>Meiners, K</creator><creator>Fowler, C. W</creator><creator>Pasquer, B</creator><creator>Williams, G. D</creator><creator>Nicol, S</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20090301</creationdate><title>Cumulative solar irradiance and potential large-scale sea ice algae distribution off East Antarctica (30°E-150°E)</title><author>Raymond, Ben ; Meiners, K ; Fowler, C. W ; Pasquer, B ; Williams, G. D ; Nicol, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-e1404eb807d13810791bdd2985abebc429817dd6dfae027e8dd661ccb25c76833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algae</topic><topic>Algal growth</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Computer based modeling</topic><topic>Ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ice</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Microbiology</topic><topic>Oceanography</topic><topic>Original Paper</topic><topic>Particular ecosystems</topic><topic>Phytoplankton</topic><topic>Plant Sciences</topic><topic>Sea ice</topic><topic>Snow</topic><topic>Snow depth</topic><topic>Synecology</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raymond, Ben</creatorcontrib><creatorcontrib>Meiners, K</creatorcontrib><creatorcontrib>Fowler, C. W</creatorcontrib><creatorcontrib>Pasquer, B</creatorcontrib><creatorcontrib>Williams, G. D</creatorcontrib><creatorcontrib>Nicol, S</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Polar biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raymond, Ben</au><au>Meiners, K</au><au>Fowler, C. W</au><au>Pasquer, B</au><au>Williams, G. D</au><au>Nicol, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cumulative solar irradiance and potential large-scale sea ice algae distribution off East Antarctica (30°E-150°E)</atitle><jtitle>Polar biology</jtitle><stitle>Polar Biol</stitle><date>2009-03-01</date><risdate>2009</risdate><volume>32</volume><issue>3</issue><spage>443</spage><epage>452</epage><pages>443-452</pages><issn>0722-4060</issn><eissn>1432-2056</eissn><coden>POBIDP</coden><abstract>We present a computational model of the large-scale cumulative light exposure of sea ice in the Southern Ocean off East Antarctica (30°E-150°E). The model uses remotely sensed or modelled sea ice concentration, snow depth over sea ice, and solar irradiance data, and tracks sea ice motion over the season of interest in order to calculate the cumulative exposure of the ice field to photosynthetically active radiation (PAR). Light is the limiting factor to sea ice algal growth over winter and early spring, and so the results have implications for the estimation of algal biomass in East Antarctica. The model results indicate that highly light-exposed ice is restricted to within a few degrees of the coast in the eastern part of the study region, but extends much further north in the 30°E-100°E sector. The relative influences of sea ice motion, solar flux, and snow depth variations on interannual variations in model predictions were evaluated. The model estimates of cumulative PAR were found to correlate with satellite estimates of subsequent open-water chlorophyll-a concentration, consistent with the notion that sea ice algae can provide inocula for phytoplankton blooms.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><doi>10.1007/s00300-008-0538-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0722-4060 |
ispartof | Polar biology, 2009-03, Vol.32 (3), p.443-452 |
issn | 0722-4060 1432-2056 |
language | eng |
recordid | cdi_proquest_journals_210832983 |
source | SpringerLink Journals |
subjects | Algae Algal growth Animal and plant ecology Animal, plant and microbial ecology Biological and medical sciences Biomedical and Life Sciences Computer based modeling Ecology Fundamental and applied biological sciences. Psychology Ice Life Sciences Light Microbiology Oceanography Original Paper Particular ecosystems Phytoplankton Plant Sciences Sea ice Snow Snow depth Synecology Zoology |
title | Cumulative solar irradiance and potential large-scale sea ice algae distribution off East Antarctica (30°E-150°E) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cumulative%20solar%20irradiance%20and%20potential%20large-scale%20sea%20ice%20algae%20distribution%20off%20East%20Antarctica%20(30%C2%B0E-150%C2%B0E)&rft.jtitle=Polar%20biology&rft.au=Raymond,%20Ben&rft.date=2009-03-01&rft.volume=32&rft.issue=3&rft.spage=443&rft.epage=452&rft.pages=443-452&rft.issn=0722-4060&rft.eissn=1432-2056&rft.coden=POBIDP&rft_id=info:doi/10.1007/s00300-008-0538-5&rft_dat=%3Cproquest_cross%3E1895009731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210832983&rft_id=info:pmid/&rfr_iscdi=true |