Electron–Phonon Scattering in AlAs and Its Response to Hydrostatic Pressure
We perform first principles calculations to predict the electron–phonon (e–ph) scattering rates in AlAs and their dependence on phonon modes at energies close to the conduction band minima (CBM), as well as high into the conduction band. We then study the effect of hydrostatic pressure on the e–ph s...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2018-12, Vol.47 (12), p.7191-7195 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7195 |
---|---|
container_issue | 12 |
container_start_page | 7191 |
container_title | Journal of electronic materials |
container_volume | 47 |
creator | Tandon, Nandan Ram-Mohan, L. R. Albrecht, J. D. |
description | We perform first principles calculations to predict the electron–phonon (e–ph) scattering rates in AlAs and their dependence on phonon modes at energies close to the conduction band minima (CBM), as well as high into the conduction band. We then study the effect of hydrostatic pressure on the e–ph scattering in AlAs for pressures up to
∼
8.77 GPa. The effect of such pressures on the electronic structure and phonon dispersion is well documented. In AlAs, the bandgap becomes smaller, whereas the effect on phonon dispersion is to shift the optical phonon bands to higher frequencies and the acoustic branches to lower frequencies. In light of this, we explore the effect of hydrostatic pressure on the resulting scattering rates with increasing pressure along the high symmetry
L
→
Γ
→
X
path. The results suggest that hydrostatic pressure does not significantly affect electron–phonon scattering rate. |
doi_str_mv | 10.1007/s11664-018-6651-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2108029585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2108029585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4cb51bd2bab179f3a3f5da2b925a8b3ebefbc4233e68f0c5a527c56c21b1eb283</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKsP4C7gejQ3maTpshS1hYrFH3AXkkxGp9RkTNJFd76Db-iTOMMIrlxduHznu5eD0DmQSyBkcpUAhCgLArIQgkPBD9AIeMkKkOLlEI0IE92SMn6MTlLaEAIcJIzQ3fXW2RyD__78Wr8FHzx-tDpnFxv_ihuPZ9tZwtpXeJkTfnCpDT45nANe7KsYUta5sXgdXUq76E7RUa23yZ39zjF6vrl-mi-K1f3tcj5bFZaByEVpDQdTUaMNTKY106zmlaZmSrmWhjnjamNLypgTsiaWa04nlgtLwYAzVLIxuhh62xg-di5ltQm76LuTigKRhE655F0KhpTtHk3R1aqNzbuOewVE9dbUYE111lRvTfUMHZjU9gZc_Gv-H_oBEo1xCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108029585</pqid></control><display><type>article</type><title>Electron–Phonon Scattering in AlAs and Its Response to Hydrostatic Pressure</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tandon, Nandan ; Ram-Mohan, L. R. ; Albrecht, J. D.</creator><creatorcontrib>Tandon, Nandan ; Ram-Mohan, L. R. ; Albrecht, J. D.</creatorcontrib><description>We perform first principles calculations to predict the electron–phonon (e–ph) scattering rates in AlAs and their dependence on phonon modes at energies close to the conduction band minima (CBM), as well as high into the conduction band. We then study the effect of hydrostatic pressure on the e–ph scattering in AlAs for pressures up to
∼
8.77 GPa. The effect of such pressures on the electronic structure and phonon dispersion is well documented. In AlAs, the bandgap becomes smaller, whereas the effect on phonon dispersion is to shift the optical phonon bands to higher frequencies and the acoustic branches to lower frequencies. In light of this, we explore the effect of hydrostatic pressure on the resulting scattering rates with increasing pressure along the high symmetry
L
→
Γ
→
X
path. The results suggest that hydrostatic pressure does not significantly affect electron–phonon scattering rate.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-018-6651-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Conduction bands ; Dependence ; Dispersion ; Electronic structure ; Electronics and Microelectronics ; Electrons ; First principles ; Hydrostatic pressure ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Pressure effects ; Scattering ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2018-12, Vol.47 (12), p.7191-7195</ispartof><rights>The Minerals, Metals & Materials Society 2018</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4cb51bd2bab179f3a3f5da2b925a8b3ebefbc4233e68f0c5a527c56c21b1eb283</citedby><cites>FETCH-LOGICAL-c316t-4cb51bd2bab179f3a3f5da2b925a8b3ebefbc4233e68f0c5a527c56c21b1eb283</cites><orcidid>0000-0003-1698-027X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-018-6651-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-018-6651-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tandon, Nandan</creatorcontrib><creatorcontrib>Ram-Mohan, L. R.</creatorcontrib><creatorcontrib>Albrecht, J. D.</creatorcontrib><title>Electron–Phonon Scattering in AlAs and Its Response to Hydrostatic Pressure</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>We perform first principles calculations to predict the electron–phonon (e–ph) scattering rates in AlAs and their dependence on phonon modes at energies close to the conduction band minima (CBM), as well as high into the conduction band. We then study the effect of hydrostatic pressure on the e–ph scattering in AlAs for pressures up to
∼
8.77 GPa. The effect of such pressures on the electronic structure and phonon dispersion is well documented. In AlAs, the bandgap becomes smaller, whereas the effect on phonon dispersion is to shift the optical phonon bands to higher frequencies and the acoustic branches to lower frequencies. In light of this, we explore the effect of hydrostatic pressure on the resulting scattering rates with increasing pressure along the high symmetry
L
→
Γ
→
X
path. The results suggest that hydrostatic pressure does not significantly affect electron–phonon scattering rate.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Conduction bands</subject><subject>Dependence</subject><subject>Dispersion</subject><subject>Electronic structure</subject><subject>Electronics and Microelectronics</subject><subject>Electrons</subject><subject>First principles</subject><subject>Hydrostatic pressure</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Pressure effects</subject><subject>Scattering</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1KAzEURoMoWKsP4C7gejQ3maTpshS1hYrFH3AXkkxGp9RkTNJFd76Db-iTOMMIrlxduHznu5eD0DmQSyBkcpUAhCgLArIQgkPBD9AIeMkKkOLlEI0IE92SMn6MTlLaEAIcJIzQ3fXW2RyD__78Wr8FHzx-tDpnFxv_ihuPZ9tZwtpXeJkTfnCpDT45nANe7KsYUta5sXgdXUq76E7RUa23yZ39zjF6vrl-mi-K1f3tcj5bFZaByEVpDQdTUaMNTKY106zmlaZmSrmWhjnjamNLypgTsiaWa04nlgtLwYAzVLIxuhh62xg-di5ltQm76LuTigKRhE655F0KhpTtHk3R1aqNzbuOewVE9dbUYE111lRvTfUMHZjU9gZc_Gv-H_oBEo1xCw</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Tandon, Nandan</creator><creator>Ram-Mohan, L. R.</creator><creator>Albrecht, J. D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-1698-027X</orcidid></search><sort><creationdate>20181201</creationdate><title>Electron–Phonon Scattering in AlAs and Its Response to Hydrostatic Pressure</title><author>Tandon, Nandan ; Ram-Mohan, L. R. ; Albrecht, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4cb51bd2bab179f3a3f5da2b925a8b3ebefbc4233e68f0c5a527c56c21b1eb283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Conduction bands</topic><topic>Dependence</topic><topic>Dispersion</topic><topic>Electronic structure</topic><topic>Electronics and Microelectronics</topic><topic>Electrons</topic><topic>First principles</topic><topic>Hydrostatic pressure</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Pressure effects</topic><topic>Scattering</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tandon, Nandan</creatorcontrib><creatorcontrib>Ram-Mohan, L. R.</creatorcontrib><creatorcontrib>Albrecht, J. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tandon, Nandan</au><au>Ram-Mohan, L. R.</au><au>Albrecht, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron–Phonon Scattering in AlAs and Its Response to Hydrostatic Pressure</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>47</volume><issue>12</issue><spage>7191</spage><epage>7195</epage><pages>7191-7195</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>We perform first principles calculations to predict the electron–phonon (e–ph) scattering rates in AlAs and their dependence on phonon modes at energies close to the conduction band minima (CBM), as well as high into the conduction band. We then study the effect of hydrostatic pressure on the e–ph scattering in AlAs for pressures up to
∼
8.77 GPa. The effect of such pressures on the electronic structure and phonon dispersion is well documented. In AlAs, the bandgap becomes smaller, whereas the effect on phonon dispersion is to shift the optical phonon bands to higher frequencies and the acoustic branches to lower frequencies. In light of this, we explore the effect of hydrostatic pressure on the resulting scattering rates with increasing pressure along the high symmetry
L
→
Γ
→
X
path. The results suggest that hydrostatic pressure does not significantly affect electron–phonon scattering rate.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-018-6651-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1698-027X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2018-12, Vol.47 (12), p.7191-7195 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2108029585 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Conduction bands Dependence Dispersion Electronic structure Electronics and Microelectronics Electrons First principles Hydrostatic pressure Instrumentation Materials Science Optical and Electronic Materials Pressure effects Scattering Solid State Physics |
title | Electron–Phonon Scattering in AlAs and Its Response to Hydrostatic Pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%E2%80%93Phonon%20Scattering%20in%20AlAs%20and%20Its%20Response%20to%20Hydrostatic%20Pressure&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Tandon,%20Nandan&rft.date=2018-12-01&rft.volume=47&rft.issue=12&rft.spage=7191&rft.epage=7195&rft.pages=7191-7195&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-018-6651-5&rft_dat=%3Cproquest_cross%3E2108029585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2108029585&rft_id=info:pmid/&rfr_iscdi=true |