Image recognition performance enhancements using image normalization

When recognizing a specific object in an image captured by a camera, we extract local descriptors to compare it with or try direct comparison of images through learning methods using convolutional neural networks. The more the number of objects with many features, the greater the number of images us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human-centric computing and information sciences 2017-11, Vol.7 (1), p.1-11, Article 33
Hauptverfasser: Koo, Kyung-Mo, Cha, Eui-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1
container_title Human-centric computing and information sciences
container_volume 7
creator Koo, Kyung-Mo
Cha, Eui-Young
description When recognizing a specific object in an image captured by a camera, we extract local descriptors to compare it with or try direct comparison of images through learning methods using convolutional neural networks. The more the number of objects with many features, the greater the number of images used in learning, the easier it is to compare features. It also makes it easier to detect if the image contains the feature, thus helping generate accurate recognition results. However, there are limitations in improving the recognition performance when the feature of the object to be recognized in the image is significantly smaller than the background area or when the area of the image to be learned is insufficient. In this paper, we propose a method to enhance the image recognition performance through feature extraction and image normalization called the preprocessing process, especially useful for electronic objects with few distinct recognition characteristics due to functional/material specificity.
doi_str_mv 10.1186/s13673-017-0114-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2107992377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2107992377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-e4cc8ec137ef60343e4877d8670ee2edd19ff0f8e9eb78fa22e94f6e8c3f09813</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EElXpD2CLxBzwtZ3YHlF5tFIlFpit4FyHVI1T7GSAX49DkGBhuDp3ON99HEIugV4DqPImAi8lzynIVCDy4oQsGGiWgy7Z6Z_-nKxi3FNKgUpWSL4gd9uuajALaPvGt0Pb--yIwfWhq7zFDP3bpB36IWZjbH2Ttd-AnxyH9rOakAty5qpDxNWPLsnLw_3zepPvnh6369tdbgUrhhyFtQotcImupFxwFErKWpWSIjKsa9DOUadQ46tUrmIMtXAlKssd1Qr4klzNc4-hfx8xDmbfj8GnlYalj7RmXMrkgtllQx9jQGeOIR0dPgxQM-Vl5rxMystMeZkiMWxmYvL6BsPv5P-hLyVCbi8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2107992377</pqid></control><display><type>article</type><title>Image recognition performance enhancements using image normalization</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Koo, Kyung-Mo ; Cha, Eui-Young</creator><creatorcontrib>Koo, Kyung-Mo ; Cha, Eui-Young</creatorcontrib><description>When recognizing a specific object in an image captured by a camera, we extract local descriptors to compare it with or try direct comparison of images through learning methods using convolutional neural networks. The more the number of objects with many features, the greater the number of images used in learning, the easier it is to compare features. It also makes it easier to detect if the image contains the feature, thus helping generate accurate recognition results. However, there are limitations in improving the recognition performance when the feature of the object to be recognized in the image is significantly smaller than the background area or when the area of the image to be learned is insufficient. In this paper, we propose a method to enhance the image recognition performance through feature extraction and image normalization called the preprocessing process, especially useful for electronic objects with few distinct recognition characteristics due to functional/material specificity.</description><identifier>ISSN: 2192-1962</identifier><identifier>EISSN: 2192-1962</identifier><identifier>DOI: 10.1186/s13673-017-0114-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Communications Engineering ; Computer Science ; Computer Systems Organization and Communication Networks ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; Networks ; Neural networks ; Recall ; User Interfaces and Human Computer Interaction</subject><ispartof>Human-centric computing and information sciences, 2017-11, Vol.7 (1), p.1-11, Article 33</ispartof><rights>The Author(s) 2017</rights><rights>Human-centric Computing and Information Sciences is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-e4cc8ec137ef60343e4877d8670ee2edd19ff0f8e9eb78fa22e94f6e8c3f09813</citedby><cites>FETCH-LOGICAL-c425t-e4cc8ec137ef60343e4877d8670ee2edd19ff0f8e9eb78fa22e94f6e8c3f09813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1186/s13673-017-0114-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1186/s13673-017-0114-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,42165,51551</link.rule.ids></links><search><creatorcontrib>Koo, Kyung-Mo</creatorcontrib><creatorcontrib>Cha, Eui-Young</creatorcontrib><title>Image recognition performance enhancements using image normalization</title><title>Human-centric computing and information sciences</title><addtitle>Hum. Cent. Comput. Inf. Sci</addtitle><description>When recognizing a specific object in an image captured by a camera, we extract local descriptors to compare it with or try direct comparison of images through learning methods using convolutional neural networks. The more the number of objects with many features, the greater the number of images used in learning, the easier it is to compare features. It also makes it easier to detect if the image contains the feature, thus helping generate accurate recognition results. However, there are limitations in improving the recognition performance when the feature of the object to be recognized in the image is significantly smaller than the background area or when the area of the image to be learned is insufficient. In this paper, we propose a method to enhance the image recognition performance through feature extraction and image normalization called the preprocessing process, especially useful for electronic objects with few distinct recognition characteristics due to functional/material specificity.</description><subject>Artificial Intelligence</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Recall</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>2192-1962</issn><issn>2192-1962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAUhS0EElXpD2CLxBzwtZ3YHlF5tFIlFpit4FyHVI1T7GSAX49DkGBhuDp3ON99HEIugV4DqPImAi8lzynIVCDy4oQsGGiWgy7Z6Z_-nKxi3FNKgUpWSL4gd9uuajALaPvGt0Pb--yIwfWhq7zFDP3bpB36IWZjbH2Ttd-AnxyH9rOakAty5qpDxNWPLsnLw_3zepPvnh6369tdbgUrhhyFtQotcImupFxwFErKWpWSIjKsa9DOUadQ46tUrmIMtXAlKssd1Qr4klzNc4-hfx8xDmbfj8GnlYalj7RmXMrkgtllQx9jQGeOIR0dPgxQM-Vl5rxMystMeZkiMWxmYvL6BsPv5P-hLyVCbi8</recordid><startdate>20171119</startdate><enddate>20171119</enddate><creator>Koo, Kyung-Mo</creator><creator>Cha, Eui-Young</creator><general>Springer Berlin Heidelberg</general><general>Korea Information Processing Society, Computer Software Research Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20171119</creationdate><title>Image recognition performance enhancements using image normalization</title><author>Koo, Kyung-Mo ; Cha, Eui-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-e4cc8ec137ef60343e4877d8670ee2edd19ff0f8e9eb78fa22e94f6e8c3f09813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial Intelligence</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Recall</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koo, Kyung-Mo</creatorcontrib><creatorcontrib>Cha, Eui-Young</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Human-centric computing and information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koo, Kyung-Mo</au><au>Cha, Eui-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image recognition performance enhancements using image normalization</atitle><jtitle>Human-centric computing and information sciences</jtitle><stitle>Hum. Cent. Comput. Inf. Sci</stitle><date>2017-11-19</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>33</artnum><issn>2192-1962</issn><eissn>2192-1962</eissn><abstract>When recognizing a specific object in an image captured by a camera, we extract local descriptors to compare it with or try direct comparison of images through learning methods using convolutional neural networks. The more the number of objects with many features, the greater the number of images used in learning, the easier it is to compare features. It also makes it easier to detect if the image contains the feature, thus helping generate accurate recognition results. However, there are limitations in improving the recognition performance when the feature of the object to be recognized in the image is significantly smaller than the background area or when the area of the image to be learned is insufficient. In this paper, we propose a method to enhance the image recognition performance through feature extraction and image normalization called the preprocessing process, especially useful for electronic objects with few distinct recognition characteristics due to functional/material specificity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1186/s13673-017-0114-5</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-1962
ispartof Human-centric computing and information sciences, 2017-11, Vol.7 (1), p.1-11, Article 33
issn 2192-1962
2192-1962
language eng
recordid cdi_proquest_journals_2107992377
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects Artificial Intelligence
Communications Engineering
Computer Science
Computer Systems Organization and Communication Networks
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
Networks
Neural networks
Recall
User Interfaces and Human Computer Interaction
title Image recognition performance enhancements using image normalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20recognition%20performance%20enhancements%20using%20image%20normalization&rft.jtitle=Human-centric%20computing%20and%20information%20sciences&rft.au=Koo,%20Kyung-Mo&rft.date=2017-11-19&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=33&rft.issn=2192-1962&rft.eissn=2192-1962&rft_id=info:doi/10.1186/s13673-017-0114-5&rft_dat=%3Cproquest_cross%3E2107992377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2107992377&rft_id=info:pmid/&rfr_iscdi=true