Attitude Controller Design with State Constraints for Kinetic Kill Vehicle Based on Barrier Lyapunov Function
An adaptive attitude controller is designed based on Barrier Lyapunov Function (BLF) to meet the state constraints caused by side window detection. Firstly, the attitude controller is designed based on the BLF, but the stabilization function is complex and its time derivative will cause “differentia...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-15 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2018 |
creator | Xiao, ChuHan Wang, Huaji Li, Jiong Zhang, Tao Li, Wanqi |
description | An adaptive attitude controller is designed based on Barrier Lyapunov Function (BLF) to meet the state constraints caused by side window detection. Firstly, the attitude controller is designed based on the BLF, but the stabilization function is complex and its time derivative will cause “differential explosion”. Therefore, Finite-time-convergent Differentiator (FD) is used to estimate the first derivative of the stabilization function. If the tracking error is outside the BLF's convergence domain, BLF controller cannot guarantee the error global convergence. Sliding mode controller (SMC) is used to make the system's error converge to set domain, and then the BLF controller could be used to ensure that the output constraint is not violated. Uncertainties and unknown time-varying disturbances usually make the control precision worse and Nonlinear Disturbance Observer (NDO) is designed for estimation and compensation uncertainties and disturbances. The pseudo rate modulator (PSR) is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the thruster. Numerical simulations show that the proposed method can achieve state constraints, pseudo-linear operation, and high accuracy. |
doi_str_mv | 10.1155/2018/4397548 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2105000599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2105000599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-57b66bc3945c2eb32430eeccaee97073e5cb1a0d678ee646b2dd5fba1193082c3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AiCs7pzbMEPGpdfjRNe5zTqTjw4A-8lTR9dRldMpPUsf_ezAkePb0H78P3wTdJTgm-IoTzEcWkGGWsFDwr9pIB4TlLOcnEftwxzVJC2fthcuT9AmNKOCkGyXIcgg59A2hiTXC268ChG_D6w6C1DnP0HGT4OfrgpDbBo9Y69KgNBK3i7Dr0BnOtOkDX0kODrImLczrmzDZy1Rv7haa9UUFbc5wctLLzcPI7h8nr9PZlcp_Onu4eJuNZqhgRIeWizvNasTLjikLNaMYwgFISoBRYMOCqJhI3uSgA8iyvadPwtpaElAwXVLFhcr7LXTn72YMP1cL2zsSXFSWYY4x5WUZ1uVPKWe8dtNXK6aV0m4rgaltotS20-i008osdn2vTyLX-T5_tNEQDrfzTFItMFOwbFF6AIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2105000599</pqid></control><display><type>article</type><title>Attitude Controller Design with State Constraints for Kinetic Kill Vehicle Based on Barrier Lyapunov Function</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Xiao, ChuHan ; Wang, Huaji ; Li, Jiong ; Zhang, Tao ; Li, Wanqi</creator><contributor>Lungu, Mihai ; Mihai Lungu</contributor><creatorcontrib>Xiao, ChuHan ; Wang, Huaji ; Li, Jiong ; Zhang, Tao ; Li, Wanqi ; Lungu, Mihai ; Mihai Lungu</creatorcontrib><description>An adaptive attitude controller is designed based on Barrier Lyapunov Function (BLF) to meet the state constraints caused by side window detection. Firstly, the attitude controller is designed based on the BLF, but the stabilization function is complex and its time derivative will cause “differential explosion”. Therefore, Finite-time-convergent Differentiator (FD) is used to estimate the first derivative of the stabilization function. If the tracking error is outside the BLF's convergence domain, BLF controller cannot guarantee the error global convergence. Sliding mode controller (SMC) is used to make the system's error converge to set domain, and then the BLF controller could be used to ensure that the output constraint is not violated. Uncertainties and unknown time-varying disturbances usually make the control precision worse and Nonlinear Disturbance Observer (NDO) is designed for estimation and compensation uncertainties and disturbances. The pseudo rate modulator (PSR) is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the thruster. Numerical simulations show that the proposed method can achieve state constraints, pseudo-linear operation, and high accuracy.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/4397548</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Aircraft ; Attitude control ; Control systems design ; Control theory ; Controllers ; Convergence ; Derivatives ; Design ; Disturbance observers ; Domains ; Liapunov functions ; Methods ; Nonlinear systems ; Signal processing ; Sliding mode control ; Stabilization ; Tracking errors ; Uncertainty</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-15</ispartof><rights>Copyright © 2018 Tao Zhang et al.</rights><rights>Copyright © 2018 Tao Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-57b66bc3945c2eb32430eeccaee97073e5cb1a0d678ee646b2dd5fba1193082c3</cites><orcidid>0000-0002-7678-9998 ; 0000-0002-5348-3275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><contributor>Lungu, Mihai</contributor><contributor>Mihai Lungu</contributor><creatorcontrib>Xiao, ChuHan</creatorcontrib><creatorcontrib>Wang, Huaji</creatorcontrib><creatorcontrib>Li, Jiong</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Li, Wanqi</creatorcontrib><title>Attitude Controller Design with State Constraints for Kinetic Kill Vehicle Based on Barrier Lyapunov Function</title><title>Mathematical problems in engineering</title><description>An adaptive attitude controller is designed based on Barrier Lyapunov Function (BLF) to meet the state constraints caused by side window detection. Firstly, the attitude controller is designed based on the BLF, but the stabilization function is complex and its time derivative will cause “differential explosion”. Therefore, Finite-time-convergent Differentiator (FD) is used to estimate the first derivative of the stabilization function. If the tracking error is outside the BLF's convergence domain, BLF controller cannot guarantee the error global convergence. Sliding mode controller (SMC) is used to make the system's error converge to set domain, and then the BLF controller could be used to ensure that the output constraint is not violated. Uncertainties and unknown time-varying disturbances usually make the control precision worse and Nonlinear Disturbance Observer (NDO) is designed for estimation and compensation uncertainties and disturbances. The pseudo rate modulator (PSR) is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the thruster. Numerical simulations show that the proposed method can achieve state constraints, pseudo-linear operation, and high accuracy.</description><subject>Aircraft</subject><subject>Attitude control</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Convergence</subject><subject>Derivatives</subject><subject>Design</subject><subject>Disturbance observers</subject><subject>Domains</subject><subject>Liapunov functions</subject><subject>Methods</subject><subject>Nonlinear systems</subject><subject>Signal processing</subject><subject>Sliding mode control</subject><subject>Stabilization</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M9LwzAUB_AiCs7pzbMEPGpdfjRNe5zTqTjw4A-8lTR9dRldMpPUsf_ezAkePb0H78P3wTdJTgm-IoTzEcWkGGWsFDwr9pIB4TlLOcnEftwxzVJC2fthcuT9AmNKOCkGyXIcgg59A2hiTXC268ChG_D6w6C1DnP0HGT4OfrgpDbBo9Y69KgNBK3i7Dr0BnOtOkDX0kODrImLczrmzDZy1Rv7haa9UUFbc5wctLLzcPI7h8nr9PZlcp_Onu4eJuNZqhgRIeWizvNasTLjikLNaMYwgFISoBRYMOCqJhI3uSgA8iyvadPwtpaElAwXVLFhcr7LXTn72YMP1cL2zsSXFSWYY4x5WUZ1uVPKWe8dtNXK6aV0m4rgaltotS20-i008osdn2vTyLX-T5_tNEQDrfzTFItMFOwbFF6AIA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Xiao, ChuHan</creator><creator>Wang, Huaji</creator><creator>Li, Jiong</creator><creator>Zhang, Tao</creator><creator>Li, Wanqi</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7678-9998</orcidid><orcidid>https://orcid.org/0000-0002-5348-3275</orcidid></search><sort><creationdate>20180101</creationdate><title>Attitude Controller Design with State Constraints for Kinetic Kill Vehicle Based on Barrier Lyapunov Function</title><author>Xiao, ChuHan ; Wang, Huaji ; Li, Jiong ; Zhang, Tao ; Li, Wanqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-57b66bc3945c2eb32430eeccaee97073e5cb1a0d678ee646b2dd5fba1193082c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aircraft</topic><topic>Attitude control</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Convergence</topic><topic>Derivatives</topic><topic>Design</topic><topic>Disturbance observers</topic><topic>Domains</topic><topic>Liapunov functions</topic><topic>Methods</topic><topic>Nonlinear systems</topic><topic>Signal processing</topic><topic>Sliding mode control</topic><topic>Stabilization</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, ChuHan</creatorcontrib><creatorcontrib>Wang, Huaji</creatorcontrib><creatorcontrib>Li, Jiong</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Li, Wanqi</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, ChuHan</au><au>Wang, Huaji</au><au>Li, Jiong</au><au>Zhang, Tao</au><au>Li, Wanqi</au><au>Lungu, Mihai</au><au>Mihai Lungu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attitude Controller Design with State Constraints for Kinetic Kill Vehicle Based on Barrier Lyapunov Function</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>An adaptive attitude controller is designed based on Barrier Lyapunov Function (BLF) to meet the state constraints caused by side window detection. Firstly, the attitude controller is designed based on the BLF, but the stabilization function is complex and its time derivative will cause “differential explosion”. Therefore, Finite-time-convergent Differentiator (FD) is used to estimate the first derivative of the stabilization function. If the tracking error is outside the BLF's convergence domain, BLF controller cannot guarantee the error global convergence. Sliding mode controller (SMC) is used to make the system's error converge to set domain, and then the BLF controller could be used to ensure that the output constraint is not violated. Uncertainties and unknown time-varying disturbances usually make the control precision worse and Nonlinear Disturbance Observer (NDO) is designed for estimation and compensation uncertainties and disturbances. The pseudo rate modulator (PSR) is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the thruster. Numerical simulations show that the proposed method can achieve state constraints, pseudo-linear operation, and high accuracy.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/4397548</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7678-9998</orcidid><orcidid>https://orcid.org/0000-0002-5348-3275</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-15 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2105000599 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Aircraft Attitude control Control systems design Control theory Controllers Convergence Derivatives Design Disturbance observers Domains Liapunov functions Methods Nonlinear systems Signal processing Sliding mode control Stabilization Tracking errors Uncertainty |
title | Attitude Controller Design with State Constraints for Kinetic Kill Vehicle Based on Barrier Lyapunov Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attitude%20Controller%20Design%20with%20State%20Constraints%20for%20Kinetic%20Kill%20Vehicle%20Based%20on%20Barrier%20Lyapunov%20Function&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Xiao,%20ChuHan&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/4397548&rft_dat=%3Cproquest_cross%3E2105000599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2105000599&rft_id=info:pmid/&rfr_iscdi=true |