Numerical investigation on heat extraction performance of a downhole heat exchanger geothermal system

•A 3D model couples flow and heat transfer processes of DHE, wellbore and reservoir.•The model is validated against experimental data with a maximum error of 8.3%.•The entire temperature and flow fields of DHE system is analyzed comprehensively.•Performances of single U-tube, double U-tube and spira...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2018-04, Vol.134, p.513-526
Hauptverfasser: Shi, Yu, Song, Xianzhi, Li, Gensheng, Li, Ruixia, Zhang, Yiqun, Wang, Gaosheng, Zheng, Rui, Lyu, Zehao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 526
container_issue
container_start_page 513
container_title Applied thermal engineering
container_volume 134
creator Shi, Yu
Song, Xianzhi
Li, Gensheng
Li, Ruixia
Zhang, Yiqun
Wang, Gaosheng
Zheng, Rui
Lyu, Zehao
description •A 3D model couples flow and heat transfer processes of DHE, wellbore and reservoir.•The model is validated against experimental data with a maximum error of 8.3%.•The entire temperature and flow fields of DHE system is analyzed comprehensively.•Performances of single U-tube, double U-tube and spiral tube are compared.•Effects of key factors on heat extraction performance of DHE system are studied. The downhole heat exchanger (DHE) geothermal system is commonly used to exploit geothermal energy for space heating. In this paper, a 3D unsteady state numerical model is established to couple fluid flow and heat transfer processes of DHE system. The model is validated by field experimental data. Temperature and velocity fields are analyzed to understand thermal process of DHE system. Heat extraction performances of three different DHE structures, including single U-tube, double U-tube and spiral tube, are compared. Subsequently, cases are studied to investigate how key parameters affect DHE performance. Simulation results depict that spiral-tube has the best heat extraction performance. As working fluid mass flow rate rises, outlet temperature declines and thermal power increases. When inlet temperature ascends, outlet temperature rises while thermal power decreases. Effects of reservoir porosity and tube wall heat conductivity on DHE performance are minor. Higher subsurface water velocity and larger rock heat conductivity can improve DHE performance, but the former has a more significant influence. Besides, subsurface water flow direction has neglected influence on performances of single and double U-tube, but appreciable impact on that of spiral tube. Key findings of this work are beneficial for optimal design and optimization of DHE geothermal system.
doi_str_mv 10.1016/j.applthermaleng.2018.02.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2104941263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431117373015</els_id><sourcerecordid>2104941263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-b0903eb1b036db293232a0a0117df9717bc9cfdfa39be8a42b0c3e42b39e5c5f3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhisEEmPwHyrBtcVJ-hWJC5oYIE1wgXOUpm6bqmtK0g3278nYOHBDsmTLeu3XfoLghkBMgGS3XSzHsZ9atGvZ49DEFEgRA40B6EkwI0XOojSD7NTXLOVRwgg5Dy6c6wAILfJkFuDLZo1WK9mHetiim3QjJ22G0EeLcgrxa7JS_bRGtLXxVoPC0NShDCvzObSmx1-lauXQoA0bNMejQrdzE64vg7Na9g6vjnkevC8f3hZP0er18Xlxv4oU4_kUlcCBYUlKYFlVUs4ooxIkEJJXNc9JXiqu6qqWjJdYyISWoBj6xDimKq3ZPLg-7B2t-dj4b0RnNnbwloISSHhCaMa86u6gUtY4Z7EWo9VraXeCgNiDFZ34C1bswQqgwoP148vDOPpPthqtcEqjh1Jpi2oSldH_W_QNHD6M6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104941263</pqid></control><display><type>article</type><title>Numerical investigation on heat extraction performance of a downhole heat exchanger geothermal system</title><source>Access via ScienceDirect (Elsevier)</source><creator>Shi, Yu ; Song, Xianzhi ; Li, Gensheng ; Li, Ruixia ; Zhang, Yiqun ; Wang, Gaosheng ; Zheng, Rui ; Lyu, Zehao</creator><creatorcontrib>Shi, Yu ; Song, Xianzhi ; Li, Gensheng ; Li, Ruixia ; Zhang, Yiqun ; Wang, Gaosheng ; Zheng, Rui ; Lyu, Zehao</creatorcontrib><description>•A 3D model couples flow and heat transfer processes of DHE, wellbore and reservoir.•The model is validated against experimental data with a maximum error of 8.3%.•The entire temperature and flow fields of DHE system is analyzed comprehensively.•Performances of single U-tube, double U-tube and spiral tube are compared.•Effects of key factors on heat extraction performance of DHE system are studied. The downhole heat exchanger (DHE) geothermal system is commonly used to exploit geothermal energy for space heating. In this paper, a 3D unsteady state numerical model is established to couple fluid flow and heat transfer processes of DHE system. The model is validated by field experimental data. Temperature and velocity fields are analyzed to understand thermal process of DHE system. Heat extraction performances of three different DHE structures, including single U-tube, double U-tube and spiral tube, are compared. Subsequently, cases are studied to investigate how key parameters affect DHE performance. Simulation results depict that spiral-tube has the best heat extraction performance. As working fluid mass flow rate rises, outlet temperature declines and thermal power increases. When inlet temperature ascends, outlet temperature rises while thermal power decreases. Effects of reservoir porosity and tube wall heat conductivity on DHE performance are minor. Higher subsurface water velocity and larger rock heat conductivity can improve DHE performance, but the former has a more significant influence. Besides, subsurface water flow direction has neglected influence on performances of single and double U-tube, but appreciable impact on that of spiral tube. Key findings of this work are beneficial for optimal design and optimization of DHE geothermal system.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2018.02.002</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Design optimization ; Downhole heat exchanger ; Flow and temperature fields ; Fluid dynamics ; Fluid flow ; Geothermal energy ; Geothermal power ; Heat exchangers ; Heat extraction performance ; Heat transfer ; Heat treatment ; Influencing factors ; Inlet temperature ; Mass flow rate ; Mathematical models ; Numerical analysis ; Numerical models ; Space heating ; Temperature distribution ; Thermal conductivity ; Thermoelectricity ; Unsteady state ; Velocity distribution ; Water flow ; Working fluids</subject><ispartof>Applied thermal engineering, 2018-04, Vol.134, p.513-526</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-b0903eb1b036db293232a0a0117df9717bc9cfdfa39be8a42b0c3e42b39e5c5f3</citedby><cites>FETCH-LOGICAL-c397t-b0903eb1b036db293232a0a0117df9717bc9cfdfa39be8a42b0c3e42b39e5c5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2018.02.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Song, Xianzhi</creatorcontrib><creatorcontrib>Li, Gensheng</creatorcontrib><creatorcontrib>Li, Ruixia</creatorcontrib><creatorcontrib>Zhang, Yiqun</creatorcontrib><creatorcontrib>Wang, Gaosheng</creatorcontrib><creatorcontrib>Zheng, Rui</creatorcontrib><creatorcontrib>Lyu, Zehao</creatorcontrib><title>Numerical investigation on heat extraction performance of a downhole heat exchanger geothermal system</title><title>Applied thermal engineering</title><description>•A 3D model couples flow and heat transfer processes of DHE, wellbore and reservoir.•The model is validated against experimental data with a maximum error of 8.3%.•The entire temperature and flow fields of DHE system is analyzed comprehensively.•Performances of single U-tube, double U-tube and spiral tube are compared.•Effects of key factors on heat extraction performance of DHE system are studied. The downhole heat exchanger (DHE) geothermal system is commonly used to exploit geothermal energy for space heating. In this paper, a 3D unsteady state numerical model is established to couple fluid flow and heat transfer processes of DHE system. The model is validated by field experimental data. Temperature and velocity fields are analyzed to understand thermal process of DHE system. Heat extraction performances of three different DHE structures, including single U-tube, double U-tube and spiral tube, are compared. Subsequently, cases are studied to investigate how key parameters affect DHE performance. Simulation results depict that spiral-tube has the best heat extraction performance. As working fluid mass flow rate rises, outlet temperature declines and thermal power increases. When inlet temperature ascends, outlet temperature rises while thermal power decreases. Effects of reservoir porosity and tube wall heat conductivity on DHE performance are minor. Higher subsurface water velocity and larger rock heat conductivity can improve DHE performance, but the former has a more significant influence. Besides, subsurface water flow direction has neglected influence on performances of single and double U-tube, but appreciable impact on that of spiral tube. Key findings of this work are beneficial for optimal design and optimization of DHE geothermal system.</description><subject>Design optimization</subject><subject>Downhole heat exchanger</subject><subject>Flow and temperature fields</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Geothermal energy</subject><subject>Geothermal power</subject><subject>Heat exchangers</subject><subject>Heat extraction performance</subject><subject>Heat transfer</subject><subject>Heat treatment</subject><subject>Influencing factors</subject><subject>Inlet temperature</subject><subject>Mass flow rate</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Space heating</subject><subject>Temperature distribution</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Unsteady state</subject><subject>Velocity distribution</subject><subject>Water flow</subject><subject>Working fluids</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhisEEmPwHyrBtcVJ-hWJC5oYIE1wgXOUpm6bqmtK0g3278nYOHBDsmTLeu3XfoLghkBMgGS3XSzHsZ9atGvZ49DEFEgRA40B6EkwI0XOojSD7NTXLOVRwgg5Dy6c6wAILfJkFuDLZo1WK9mHetiim3QjJ22G0EeLcgrxa7JS_bRGtLXxVoPC0NShDCvzObSmx1-lauXQoA0bNMejQrdzE64vg7Na9g6vjnkevC8f3hZP0er18Xlxv4oU4_kUlcCBYUlKYFlVUs4ooxIkEJJXNc9JXiqu6qqWjJdYyISWoBj6xDimKq3ZPLg-7B2t-dj4b0RnNnbwloISSHhCaMa86u6gUtY4Z7EWo9VraXeCgNiDFZ34C1bswQqgwoP148vDOPpPthqtcEqjh1Jpi2oSldH_W_QNHD6M6A</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Shi, Yu</creator><creator>Song, Xianzhi</creator><creator>Li, Gensheng</creator><creator>Li, Ruixia</creator><creator>Zhang, Yiqun</creator><creator>Wang, Gaosheng</creator><creator>Zheng, Rui</creator><creator>Lyu, Zehao</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20180401</creationdate><title>Numerical investigation on heat extraction performance of a downhole heat exchanger geothermal system</title><author>Shi, Yu ; Song, Xianzhi ; Li, Gensheng ; Li, Ruixia ; Zhang, Yiqun ; Wang, Gaosheng ; Zheng, Rui ; Lyu, Zehao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-b0903eb1b036db293232a0a0117df9717bc9cfdfa39be8a42b0c3e42b39e5c5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Design optimization</topic><topic>Downhole heat exchanger</topic><topic>Flow and temperature fields</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Geothermal energy</topic><topic>Geothermal power</topic><topic>Heat exchangers</topic><topic>Heat extraction performance</topic><topic>Heat transfer</topic><topic>Heat treatment</topic><topic>Influencing factors</topic><topic>Inlet temperature</topic><topic>Mass flow rate</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Space heating</topic><topic>Temperature distribution</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Unsteady state</topic><topic>Velocity distribution</topic><topic>Water flow</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Song, Xianzhi</creatorcontrib><creatorcontrib>Li, Gensheng</creatorcontrib><creatorcontrib>Li, Ruixia</creatorcontrib><creatorcontrib>Zhang, Yiqun</creatorcontrib><creatorcontrib>Wang, Gaosheng</creatorcontrib><creatorcontrib>Zheng, Rui</creatorcontrib><creatorcontrib>Lyu, Zehao</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yu</au><au>Song, Xianzhi</au><au>Li, Gensheng</au><au>Li, Ruixia</au><au>Zhang, Yiqun</au><au>Wang, Gaosheng</au><au>Zheng, Rui</au><au>Lyu, Zehao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation on heat extraction performance of a downhole heat exchanger geothermal system</atitle><jtitle>Applied thermal engineering</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>134</volume><spage>513</spage><epage>526</epage><pages>513-526</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•A 3D model couples flow and heat transfer processes of DHE, wellbore and reservoir.•The model is validated against experimental data with a maximum error of 8.3%.•The entire temperature and flow fields of DHE system is analyzed comprehensively.•Performances of single U-tube, double U-tube and spiral tube are compared.•Effects of key factors on heat extraction performance of DHE system are studied. The downhole heat exchanger (DHE) geothermal system is commonly used to exploit geothermal energy for space heating. In this paper, a 3D unsteady state numerical model is established to couple fluid flow and heat transfer processes of DHE system. The model is validated by field experimental data. Temperature and velocity fields are analyzed to understand thermal process of DHE system. Heat extraction performances of three different DHE structures, including single U-tube, double U-tube and spiral tube, are compared. Subsequently, cases are studied to investigate how key parameters affect DHE performance. Simulation results depict that spiral-tube has the best heat extraction performance. As working fluid mass flow rate rises, outlet temperature declines and thermal power increases. When inlet temperature ascends, outlet temperature rises while thermal power decreases. Effects of reservoir porosity and tube wall heat conductivity on DHE performance are minor. Higher subsurface water velocity and larger rock heat conductivity can improve DHE performance, but the former has a more significant influence. Besides, subsurface water flow direction has neglected influence on performances of single and double U-tube, but appreciable impact on that of spiral tube. Key findings of this work are beneficial for optimal design and optimization of DHE geothermal system.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2018.02.002</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2018-04, Vol.134, p.513-526
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2104941263
source Access via ScienceDirect (Elsevier)
subjects Design optimization
Downhole heat exchanger
Flow and temperature fields
Fluid dynamics
Fluid flow
Geothermal energy
Geothermal power
Heat exchangers
Heat extraction performance
Heat transfer
Heat treatment
Influencing factors
Inlet temperature
Mass flow rate
Mathematical models
Numerical analysis
Numerical models
Space heating
Temperature distribution
Thermal conductivity
Thermoelectricity
Unsteady state
Velocity distribution
Water flow
Working fluids
title Numerical investigation on heat extraction performance of a downhole heat exchanger geothermal system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20on%20heat%20extraction%20performance%20of%20a%20downhole%20heat%20exchanger%20geothermal%20system&rft.jtitle=Applied%20thermal%20engineering&rft.au=Shi,%20Yu&rft.date=2018-04-01&rft.volume=134&rft.spage=513&rft.epage=526&rft.pages=513-526&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2018.02.002&rft_dat=%3Cproquest_cross%3E2104941263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2104941263&rft_id=info:pmid/&rft_els_id=S1359431117373015&rfr_iscdi=true