Microencapsulated self-healing polymers via controlled, surface initiated atom transfer radical polymerization from the surface of graphene oxide
Polymers were grown directly on the surface of graphene oxide (GO). The method involved the covalent attachment of an atom transfer radical polymerization (ATRP) initiator on the surface of GO followed by the polymerization of methylmethacrylate, styrene or t -butyl acrylate using it as the macroini...
Gespeichert in:
Veröffentlicht in: | Journal of polymer research 2018-10, Vol.25 (10), p.1-15, Article 217 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polymers were grown directly on the surface of graphene oxide (GO). The method involved the covalent attachment of an atom transfer radical polymerization (ATRP) initiator on the surface of GO followed by the polymerization of methylmethacrylate, styrene or
t
-butyl acrylate using it as the macroinitiator. The surface initiated poly(methylmethacrylate) (PMMA-IGO) was embedded with microcapsules containing glycidyl methacrylate (GMA) to introduce self-healing property. The polymeric chains grown on the surface of the GO exhibited self-healing behaviour on rupture of the microcapsules. These polymer chains on the surface of GO preserved living characteristics and was able to resume copolymerization with released GMA on rupture of the microcapsules and get infiltrated into the cracks. As a result, the cracked planes were covalently re-bonded, offering almost 92% recovery of strength. |
---|---|
ISSN: | 1022-9760 1572-8935 |
DOI: | 10.1007/s10965-018-1603-6 |