Canonical and Compact Point Cloud Representation for Shape Classification
We present a novel compact point cloud representation that is inherently invariant to scale, coordinate change and point permutation. The key idea is to parametrize a distance field around an individual shape into a unique, canonical, and compact vector in an unsupervised manner. We firstly project...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fujiwara, Kent Sato, Ikuro Ambai, Mitsuru Yoshida, Yuichi Sakakura, Yoshiaki |
description | We present a novel compact point cloud representation that is inherently invariant to scale, coordinate change and point permutation. The key idea is to parametrize a distance field around an individual shape into a unique, canonical, and compact vector in an unsupervised manner. We firstly project a distance field to a \(4\)D canonical space using singular value decomposition. We then train a neural network for each instance to non-linearly embed its distance field into network parameters. We employ a bias-free Extreme Learning Machine (ELM) with ReLU activation units, which has scale-factor commutative property between layers. We demonstrate the descriptiveness of the instance-wise, shape-embedded network parameters by using them to classify shapes in \(3\)D datasets. Our learning-based representation requires minimal augmentation and simple neural networks, where previous approaches demand numerous representations to handle coordinate change and point permutation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2104008287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2104008287</sourcerecordid><originalsourceid>FETCH-proquest_journals_21040082873</originalsourceid><addsrcrecordid>eNqNy0EKwjAQheEgCBbtHQKuC2nS2u6DojtR92VoE0ypMzFJ728FD-DqLb73r1gmlSqLtpJyw_IYRyGEPDSyrlXGLhqQ0PUwccCBa3p56BO_ksPE9UTzwG_GBxMNJkiOkFsK_P4EbxaGGJ1d4i_s2NrCFE3-2y3bn44PfS58oPdsYupGmgMu1MlSVEK0sm3Uf68PcKI8SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104008287</pqid></control><display><type>article</type><title>Canonical and Compact Point Cloud Representation for Shape Classification</title><source>Free E- Journals</source><creator>Fujiwara, Kent ; Sato, Ikuro ; Ambai, Mitsuru ; Yoshida, Yuichi ; Sakakura, Yoshiaki</creator><creatorcontrib>Fujiwara, Kent ; Sato, Ikuro ; Ambai, Mitsuru ; Yoshida, Yuichi ; Sakakura, Yoshiaki</creatorcontrib><description>We present a novel compact point cloud representation that is inherently invariant to scale, coordinate change and point permutation. The key idea is to parametrize a distance field around an individual shape into a unique, canonical, and compact vector in an unsupervised manner. We firstly project a distance field to a \(4\)D canonical space using singular value decomposition. We then train a neural network for each instance to non-linearly embed its distance field into network parameters. We employ a bias-free Extreme Learning Machine (ELM) with ReLU activation units, which has scale-factor commutative property between layers. We demonstrate the descriptiveness of the instance-wise, shape-embedded network parameters by using them to classify shapes in \(3\)D datasets. Our learning-based representation requires minimal augmentation and simple neural networks, where previous approaches demand numerous representations to handle coordinate change and point permutation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Neural networks ; Parameters ; Permutations ; Representations ; Singular value decomposition</subject><ispartof>arXiv.org, 2018-09</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fujiwara, Kent</creatorcontrib><creatorcontrib>Sato, Ikuro</creatorcontrib><creatorcontrib>Ambai, Mitsuru</creatorcontrib><creatorcontrib>Yoshida, Yuichi</creatorcontrib><creatorcontrib>Sakakura, Yoshiaki</creatorcontrib><title>Canonical and Compact Point Cloud Representation for Shape Classification</title><title>arXiv.org</title><description>We present a novel compact point cloud representation that is inherently invariant to scale, coordinate change and point permutation. The key idea is to parametrize a distance field around an individual shape into a unique, canonical, and compact vector in an unsupervised manner. We firstly project a distance field to a \(4\)D canonical space using singular value decomposition. We then train a neural network for each instance to non-linearly embed its distance field into network parameters. We employ a bias-free Extreme Learning Machine (ELM) with ReLU activation units, which has scale-factor commutative property between layers. We demonstrate the descriptiveness of the instance-wise, shape-embedded network parameters by using them to classify shapes in \(3\)D datasets. Our learning-based representation requires minimal augmentation and simple neural networks, where previous approaches demand numerous representations to handle coordinate change and point permutation.</description><subject>Neural networks</subject><subject>Parameters</subject><subject>Permutations</subject><subject>Representations</subject><subject>Singular value decomposition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy0EKwjAQheEgCBbtHQKuC2nS2u6DojtR92VoE0ypMzFJ728FD-DqLb73r1gmlSqLtpJyw_IYRyGEPDSyrlXGLhqQ0PUwccCBa3p56BO_ksPE9UTzwG_GBxMNJkiOkFsK_P4EbxaGGJ1d4i_s2NrCFE3-2y3bn44PfS58oPdsYupGmgMu1MlSVEK0sm3Uf68PcKI8SA</recordid><startdate>20180913</startdate><enddate>20180913</enddate><creator>Fujiwara, Kent</creator><creator>Sato, Ikuro</creator><creator>Ambai, Mitsuru</creator><creator>Yoshida, Yuichi</creator><creator>Sakakura, Yoshiaki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180913</creationdate><title>Canonical and Compact Point Cloud Representation for Shape Classification</title><author>Fujiwara, Kent ; Sato, Ikuro ; Ambai, Mitsuru ; Yoshida, Yuichi ; Sakakura, Yoshiaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21040082873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Neural networks</topic><topic>Parameters</topic><topic>Permutations</topic><topic>Representations</topic><topic>Singular value decomposition</topic><toplevel>online_resources</toplevel><creatorcontrib>Fujiwara, Kent</creatorcontrib><creatorcontrib>Sato, Ikuro</creatorcontrib><creatorcontrib>Ambai, Mitsuru</creatorcontrib><creatorcontrib>Yoshida, Yuichi</creatorcontrib><creatorcontrib>Sakakura, Yoshiaki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiwara, Kent</au><au>Sato, Ikuro</au><au>Ambai, Mitsuru</au><au>Yoshida, Yuichi</au><au>Sakakura, Yoshiaki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Canonical and Compact Point Cloud Representation for Shape Classification</atitle><jtitle>arXiv.org</jtitle><date>2018-09-13</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We present a novel compact point cloud representation that is inherently invariant to scale, coordinate change and point permutation. The key idea is to parametrize a distance field around an individual shape into a unique, canonical, and compact vector in an unsupervised manner. We firstly project a distance field to a \(4\)D canonical space using singular value decomposition. We then train a neural network for each instance to non-linearly embed its distance field into network parameters. We employ a bias-free Extreme Learning Machine (ELM) with ReLU activation units, which has scale-factor commutative property between layers. We demonstrate the descriptiveness of the instance-wise, shape-embedded network parameters by using them to classify shapes in \(3\)D datasets. Our learning-based representation requires minimal augmentation and simple neural networks, where previous approaches demand numerous representations to handle coordinate change and point permutation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2104008287 |
source | Free E- Journals |
subjects | Neural networks Parameters Permutations Representations Singular value decomposition |
title | Canonical and Compact Point Cloud Representation for Shape Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Canonical%20and%20Compact%20Point%20Cloud%20Representation%20for%20Shape%20Classification&rft.jtitle=arXiv.org&rft.au=Fujiwara,%20Kent&rft.date=2018-09-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2104008287%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2104008287&rft_id=info:pmid/&rfr_iscdi=true |