Solution Processable Inorganic–Organic Double‐Layered Hole Transport Layer for Highly Stable Planar Perovskite Solar Cells
Perovskite solar cells (PSCs) have reached their highest efficiency with 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). However, this material can cause problems with respect to reproducibility and stability. Herein, a solution‐processable inorganic–organic dou...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2018-09, Vol.8 (26), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 26 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 8 |
creator | Kim, Guan‐Woo Kang, Gyeongho Choi, Kyoungwon Choi, Hyuntae Park, Taiho |
description | Perovskite solar cells (PSCs) have reached their highest efficiency with 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). However, this material can cause problems with respect to reproducibility and stability. Herein, a solution‐processable inorganic–organic double layer based on tungsten oxide (WO3) and spiro‐OMeTAD is reported as a hole transport layer in PSCs. The device equipped with a WO3/spiro‐OMeTAD layer achieves the highest efficiency (21.44%) in the tin (IV) oxide planar structure. The electronic properties of the double layer are thoroughly analyzed using photoluminescence, space‐charge–limited current, and electrochemical impedance spectroscopy. The WO3/spiro‐OMeTAD layer exhibits better hole extraction ability and faster hole mobility. The WO3 layer particularly improves the open‐circuit voltage (VOC) by lowering the quasi‐Fermi energy level for holes and reducing charge recombination, resulting in high VOC (1.17 V in the champion cell). In addition, the WO3 layer as a scaffold layer promotes the formation of a uniform and pinhole‐free spiro‐OMeTAD overlayer in the WO3/spiro‐OMeTAD layer. High stability under thermal and humid conditions stems from this property. The study presents a facile approach for improving the efficiency and stability of PSCs by stacking an organic layer on an inorganic layer.
A tungsten oxide (WO3)/2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD double layer) is developed as a hole transport layer (HTL) in perovskite solar cells. WO3 improves the charge extraction, charge transport, and the quality of the spiro‐OMeTAD overlayer, exhibiting 21.44% efficiency. Particularly, WO3 increases the VOC of devices owing to its valence band energy level. The stabilities of devices are considerably improved by the uniform and pinhole‐free HTL derived from the WO3 scaffold layer. |
doi_str_mv | 10.1002/aenm.201801386 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2103852522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2103852522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4206-125dabc7b6afe663532179bf3c8737d332f15973143fe788758c789a925878eb3</originalsourceid><addsrcrecordid>eNqFUE1PwjAYbowmEuTquYnnYT-2tTsSRCFBIQHPTTc6HJYV26HZxfATTPyH_BILM3j0vbxvnvf5SB4ArjHqYoTIrVTluksQ5ghTHp-BFo5xGMQ8ROenm5JL0HFuhfyECUaUtsDnzOhtVZgSTq3JlHMy1QqOSmOXsiyy_e570lzwzmz9a7_7GstaWbWAQ-OZcytLtzG2gkcY5sbCYbF80TWcVUevqZaltHCqrHl3r0WloI_0QF9p7a7ARS61U53f3QbP94N5fxiMJw-jfm8cZCFBcYBJtJBpxtJY5iqOaUQJZkma04wzyhaUkhxHCaM4pLlinLOIZ4wnMiERZ1yltA1uGt-NNW9b5SqxMltb-khBfBE8IhEhntVtWJk1zlmVi40t1tLWAiNxqFkcahanmr0gaQQfhVb1P2zRGzw9_ml_AFMhg40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103852522</pqid></control><display><type>article</type><title>Solution Processable Inorganic–Organic Double‐Layered Hole Transport Layer for Highly Stable Planar Perovskite Solar Cells</title><source>Access via Wiley Online Library</source><creator>Kim, Guan‐Woo ; Kang, Gyeongho ; Choi, Kyoungwon ; Choi, Hyuntae ; Park, Taiho</creator><creatorcontrib>Kim, Guan‐Woo ; Kang, Gyeongho ; Choi, Kyoungwon ; Choi, Hyuntae ; Park, Taiho</creatorcontrib><description>Perovskite solar cells (PSCs) have reached their highest efficiency with 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). However, this material can cause problems with respect to reproducibility and stability. Herein, a solution‐processable inorganic–organic double layer based on tungsten oxide (WO3) and spiro‐OMeTAD is reported as a hole transport layer in PSCs. The device equipped with a WO3/spiro‐OMeTAD layer achieves the highest efficiency (21.44%) in the tin (IV) oxide planar structure. The electronic properties of the double layer are thoroughly analyzed using photoluminescence, space‐charge–limited current, and electrochemical impedance spectroscopy. The WO3/spiro‐OMeTAD layer exhibits better hole extraction ability and faster hole mobility. The WO3 layer particularly improves the open‐circuit voltage (VOC) by lowering the quasi‐Fermi energy level for holes and reducing charge recombination, resulting in high VOC (1.17 V in the champion cell). In addition, the WO3 layer as a scaffold layer promotes the formation of a uniform and pinhole‐free spiro‐OMeTAD overlayer in the WO3/spiro‐OMeTAD layer. High stability under thermal and humid conditions stems from this property. The study presents a facile approach for improving the efficiency and stability of PSCs by stacking an organic layer on an inorganic layer.
A tungsten oxide (WO3)/2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD double layer) is developed as a hole transport layer (HTL) in perovskite solar cells. WO3 improves the charge extraction, charge transport, and the quality of the spiro‐OMeTAD overlayer, exhibiting 21.44% efficiency. Particularly, WO3 increases the VOC of devices owing to its valence band energy level. The stabilities of devices are considerably improved by the uniform and pinhole‐free HTL derived from the WO3 scaffold layer.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201801386</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Efficiency ; Electrochemical impedance spectroscopy ; Energy levels ; Hole mobility ; hole transport layers ; inorganic–organic double layers ; Perovskites ; Photoluminescence ; Photovoltaic cells ; Pinholes ; planar perovskite solar cells ; Planar structures ; Reproducibility ; Solar cells ; Stability ; Tin dioxide ; Transport ; tungsten oxide ; Tungsten oxides</subject><ispartof>Advanced energy materials, 2018-09, Vol.8 (26), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4206-125dabc7b6afe663532179bf3c8737d332f15973143fe788758c789a925878eb3</citedby><cites>FETCH-LOGICAL-c4206-125dabc7b6afe663532179bf3c8737d332f15973143fe788758c789a925878eb3</cites><orcidid>0000-0002-5867-4679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201801386$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201801386$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Kim, Guan‐Woo</creatorcontrib><creatorcontrib>Kang, Gyeongho</creatorcontrib><creatorcontrib>Choi, Kyoungwon</creatorcontrib><creatorcontrib>Choi, Hyuntae</creatorcontrib><creatorcontrib>Park, Taiho</creatorcontrib><title>Solution Processable Inorganic–Organic Double‐Layered Hole Transport Layer for Highly Stable Planar Perovskite Solar Cells</title><title>Advanced energy materials</title><description>Perovskite solar cells (PSCs) have reached their highest efficiency with 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). However, this material can cause problems with respect to reproducibility and stability. Herein, a solution‐processable inorganic–organic double layer based on tungsten oxide (WO3) and spiro‐OMeTAD is reported as a hole transport layer in PSCs. The device equipped with a WO3/spiro‐OMeTAD layer achieves the highest efficiency (21.44%) in the tin (IV) oxide planar structure. The electronic properties of the double layer are thoroughly analyzed using photoluminescence, space‐charge–limited current, and electrochemical impedance spectroscopy. The WO3/spiro‐OMeTAD layer exhibits better hole extraction ability and faster hole mobility. The WO3 layer particularly improves the open‐circuit voltage (VOC) by lowering the quasi‐Fermi energy level for holes and reducing charge recombination, resulting in high VOC (1.17 V in the champion cell). In addition, the WO3 layer as a scaffold layer promotes the formation of a uniform and pinhole‐free spiro‐OMeTAD overlayer in the WO3/spiro‐OMeTAD layer. High stability under thermal and humid conditions stems from this property. The study presents a facile approach for improving the efficiency and stability of PSCs by stacking an organic layer on an inorganic layer.
A tungsten oxide (WO3)/2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD double layer) is developed as a hole transport layer (HTL) in perovskite solar cells. WO3 improves the charge extraction, charge transport, and the quality of the spiro‐OMeTAD overlayer, exhibiting 21.44% efficiency. Particularly, WO3 increases the VOC of devices owing to its valence band energy level. The stabilities of devices are considerably improved by the uniform and pinhole‐free HTL derived from the WO3 scaffold layer.</description><subject>Efficiency</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Energy levels</subject><subject>Hole mobility</subject><subject>hole transport layers</subject><subject>inorganic–organic double layers</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Pinholes</subject><subject>planar perovskite solar cells</subject><subject>Planar structures</subject><subject>Reproducibility</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Tin dioxide</subject><subject>Transport</subject><subject>tungsten oxide</subject><subject>Tungsten oxides</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1PwjAYbowmEuTquYnnYT-2tTsSRCFBIQHPTTc6HJYV26HZxfATTPyH_BILM3j0vbxvnvf5SB4ArjHqYoTIrVTluksQ5ghTHp-BFo5xGMQ8ROenm5JL0HFuhfyECUaUtsDnzOhtVZgSTq3JlHMy1QqOSmOXsiyy_e570lzwzmz9a7_7GstaWbWAQ-OZcytLtzG2gkcY5sbCYbF80TWcVUevqZaltHCqrHl3r0WloI_0QF9p7a7ARS61U53f3QbP94N5fxiMJw-jfm8cZCFBcYBJtJBpxtJY5iqOaUQJZkma04wzyhaUkhxHCaM4pLlinLOIZ4wnMiERZ1yltA1uGt-NNW9b5SqxMltb-khBfBE8IhEhntVtWJk1zlmVi40t1tLWAiNxqFkcahanmr0gaQQfhVb1P2zRGzw9_ml_AFMhg40</recordid><startdate>20180914</startdate><enddate>20180914</enddate><creator>Kim, Guan‐Woo</creator><creator>Kang, Gyeongho</creator><creator>Choi, Kyoungwon</creator><creator>Choi, Hyuntae</creator><creator>Park, Taiho</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5867-4679</orcidid></search><sort><creationdate>20180914</creationdate><title>Solution Processable Inorganic–Organic Double‐Layered Hole Transport Layer for Highly Stable Planar Perovskite Solar Cells</title><author>Kim, Guan‐Woo ; Kang, Gyeongho ; Choi, Kyoungwon ; Choi, Hyuntae ; Park, Taiho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4206-125dabc7b6afe663532179bf3c8737d332f15973143fe788758c789a925878eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Efficiency</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Energy levels</topic><topic>Hole mobility</topic><topic>hole transport layers</topic><topic>inorganic–organic double layers</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Pinholes</topic><topic>planar perovskite solar cells</topic><topic>Planar structures</topic><topic>Reproducibility</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Tin dioxide</topic><topic>Transport</topic><topic>tungsten oxide</topic><topic>Tungsten oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Guan‐Woo</creatorcontrib><creatorcontrib>Kang, Gyeongho</creatorcontrib><creatorcontrib>Choi, Kyoungwon</creatorcontrib><creatorcontrib>Choi, Hyuntae</creatorcontrib><creatorcontrib>Park, Taiho</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Guan‐Woo</au><au>Kang, Gyeongho</au><au>Choi, Kyoungwon</au><au>Choi, Hyuntae</au><au>Park, Taiho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution Processable Inorganic–Organic Double‐Layered Hole Transport Layer for Highly Stable Planar Perovskite Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2018-09-14</date><risdate>2018</risdate><volume>8</volume><issue>26</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Perovskite solar cells (PSCs) have reached their highest efficiency with 2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD). However, this material can cause problems with respect to reproducibility and stability. Herein, a solution‐processable inorganic–organic double layer based on tungsten oxide (WO3) and spiro‐OMeTAD is reported as a hole transport layer in PSCs. The device equipped with a WO3/spiro‐OMeTAD layer achieves the highest efficiency (21.44%) in the tin (IV) oxide planar structure. The electronic properties of the double layer are thoroughly analyzed using photoluminescence, space‐charge–limited current, and electrochemical impedance spectroscopy. The WO3/spiro‐OMeTAD layer exhibits better hole extraction ability and faster hole mobility. The WO3 layer particularly improves the open‐circuit voltage (VOC) by lowering the quasi‐Fermi energy level for holes and reducing charge recombination, resulting in high VOC (1.17 V in the champion cell). In addition, the WO3 layer as a scaffold layer promotes the formation of a uniform and pinhole‐free spiro‐OMeTAD overlayer in the WO3/spiro‐OMeTAD layer. High stability under thermal and humid conditions stems from this property. The study presents a facile approach for improving the efficiency and stability of PSCs by stacking an organic layer on an inorganic layer.
A tungsten oxide (WO3)/2,2′,7,7′‐tetrakis(N,N′‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD double layer) is developed as a hole transport layer (HTL) in perovskite solar cells. WO3 improves the charge extraction, charge transport, and the quality of the spiro‐OMeTAD overlayer, exhibiting 21.44% efficiency. Particularly, WO3 increases the VOC of devices owing to its valence band energy level. The stabilities of devices are considerably improved by the uniform and pinhole‐free HTL derived from the WO3 scaffold layer.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201801386</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5867-4679</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2018-09, Vol.8 (26), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2103852522 |
source | Access via Wiley Online Library |
subjects | Efficiency Electrochemical impedance spectroscopy Energy levels Hole mobility hole transport layers inorganic–organic double layers Perovskites Photoluminescence Photovoltaic cells Pinholes planar perovskite solar cells Planar structures Reproducibility Solar cells Stability Tin dioxide Transport tungsten oxide Tungsten oxides |
title | Solution Processable Inorganic–Organic Double‐Layered Hole Transport Layer for Highly Stable Planar Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20Processable%20Inorganic%E2%80%93Organic%20Double%E2%80%90Layered%20Hole%20Transport%20Layer%20for%20Highly%20Stable%20Planar%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Kim,%20Guan%E2%80%90Woo&rft.date=2018-09-14&rft.volume=8&rft.issue=26&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201801386&rft_dat=%3Cproquest_cross%3E2103852522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103852522&rft_id=info:pmid/&rfr_iscdi=true |