Leabra7: a Python package for modeling recurrent, biologically-realistic neural networks

Emergent is a software package that uses the AdEx neural dynamics model and LEABRA learning algorithm to simulate and train arbitrary recurrent neural network architectures in a biologically-realistic manner. We present Leabra7, a complementary Python library that implements these same algorithms. L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-09
Hauptverfasser: Greenidge, C Daniel, Miller, Noam, Norman, Kenneth A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Greenidge, C Daniel
Miller, Noam
Norman, Kenneth A
description Emergent is a software package that uses the AdEx neural dynamics model and LEABRA learning algorithm to simulate and train arbitrary recurrent neural network architectures in a biologically-realistic manner. We present Leabra7, a complementary Python library that implements these same algorithms. Leabra7 is developed and distributed using modern software development principles, and integrates tightly with Python's scientific stack. We demonstrate recurrent Leabra7 networks using traditional pattern-association tasks and a standard machine learning task, classifying the IRIS dataset.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2103357099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2103357099</sourcerecordid><originalsourceid>FETCH-proquest_journals_21033570993</originalsourceid><addsrcrecordid>eNqNysEOATEQgOFGIiF4hyauNqnWWlyFODg4OLhtRo1VqsO0G9m3twcP4PQd_r8j-tqYabaYad0ToxjvSik9L3Sem7447RHODMVKgjw06UZBvsA-oEJ5JZZPuqB3oZKMtmbGkCby7MhT5Sx432SM4F1MzsqANYNvSR_iRxyK7hV8xNHPgRhvN8f1LnsxvWuMqbxTzaFNpZ4qY_JCLZfmv-sLl_JCOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103357099</pqid></control><display><type>article</type><title>Leabra7: a Python package for modeling recurrent, biologically-realistic neural networks</title><source>Free E- Journals</source><creator>Greenidge, C Daniel ; Miller, Noam ; Norman, Kenneth A</creator><creatorcontrib>Greenidge, C Daniel ; Miller, Noam ; Norman, Kenneth A</creatorcontrib><description>Emergent is a software package that uses the AdEx neural dynamics model and LEABRA learning algorithm to simulate and train arbitrary recurrent neural network architectures in a biologically-realistic manner. We present Leabra7, a complementary Python library that implements these same algorithms. Leabra7 is developed and distributed using modern software development principles, and integrates tightly with Python's scientific stack. We demonstrate recurrent Leabra7 networks using traditional pattern-association tasks and a standard machine learning task, classifying the IRIS dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer simulation ; Machine learning ; Neural networks ; Python ; Recurrent neural networks ; Software development</subject><ispartof>arXiv.org, 2018-09</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Greenidge, C Daniel</creatorcontrib><creatorcontrib>Miller, Noam</creatorcontrib><creatorcontrib>Norman, Kenneth A</creatorcontrib><title>Leabra7: a Python package for modeling recurrent, biologically-realistic neural networks</title><title>arXiv.org</title><description>Emergent is a software package that uses the AdEx neural dynamics model and LEABRA learning algorithm to simulate and train arbitrary recurrent neural network architectures in a biologically-realistic manner. We present Leabra7, a complementary Python library that implements these same algorithms. Leabra7 is developed and distributed using modern software development principles, and integrates tightly with Python's scientific stack. We demonstrate recurrent Leabra7 networks using traditional pattern-association tasks and a standard machine learning task, classifying the IRIS dataset.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Python</subject><subject>Recurrent neural networks</subject><subject>Software development</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNysEOATEQgOFGIiF4hyauNqnWWlyFODg4OLhtRo1VqsO0G9m3twcP4PQd_r8j-tqYabaYad0ToxjvSik9L3Sem7447RHODMVKgjw06UZBvsA-oEJ5JZZPuqB3oZKMtmbGkCby7MhT5Sx432SM4F1MzsqANYNvSR_iRxyK7hV8xNHPgRhvN8f1LnsxvWuMqbxTzaFNpZ4qY_JCLZfmv-sLl_JCOQ</recordid><startdate>20180919</startdate><enddate>20180919</enddate><creator>Greenidge, C Daniel</creator><creator>Miller, Noam</creator><creator>Norman, Kenneth A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180919</creationdate><title>Leabra7: a Python package for modeling recurrent, biologically-realistic neural networks</title><author>Greenidge, C Daniel ; Miller, Noam ; Norman, Kenneth A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21033570993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Python</topic><topic>Recurrent neural networks</topic><topic>Software development</topic><toplevel>online_resources</toplevel><creatorcontrib>Greenidge, C Daniel</creatorcontrib><creatorcontrib>Miller, Noam</creatorcontrib><creatorcontrib>Norman, Kenneth A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greenidge, C Daniel</au><au>Miller, Noam</au><au>Norman, Kenneth A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Leabra7: a Python package for modeling recurrent, biologically-realistic neural networks</atitle><jtitle>arXiv.org</jtitle><date>2018-09-19</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Emergent is a software package that uses the AdEx neural dynamics model and LEABRA learning algorithm to simulate and train arbitrary recurrent neural network architectures in a biologically-realistic manner. We present Leabra7, a complementary Python library that implements these same algorithms. Leabra7 is developed and distributed using modern software development principles, and integrates tightly with Python's scientific stack. We demonstrate recurrent Leabra7 networks using traditional pattern-association tasks and a standard machine learning task, classifying the IRIS dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2103357099
source Free E- Journals
subjects Algorithms
Computer simulation
Machine learning
Neural networks
Python
Recurrent neural networks
Software development
title Leabra7: a Python package for modeling recurrent, biologically-realistic neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Leabra7:%20a%20Python%20package%20for%20modeling%20recurrent,%20biologically-realistic%20neural%20networks&rft.jtitle=arXiv.org&rft.au=Greenidge,%20C%20Daniel&rft.date=2018-09-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2103357099%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103357099&rft_id=info:pmid/&rfr_iscdi=true