Leabra7: a Python package for modeling recurrent, biologically-realistic neural networks
Emergent is a software package that uses the AdEx neural dynamics model and LEABRA learning algorithm to simulate and train arbitrary recurrent neural network architectures in a biologically-realistic manner. We present Leabra7, a complementary Python library that implements these same algorithms. L...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Greenidge, C Daniel Miller, Noam Norman, Kenneth A |
description | Emergent is a software package that uses the AdEx neural dynamics model and LEABRA learning algorithm to simulate and train arbitrary recurrent neural network architectures in a biologically-realistic manner. We present Leabra7, a complementary Python library that implements these same algorithms. Leabra7 is developed and distributed using modern software development principles, and integrates tightly with Python's scientific stack. We demonstrate recurrent Leabra7 networks using traditional pattern-association tasks and a standard machine learning task, classifying the IRIS dataset. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2103357099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2103357099</sourcerecordid><originalsourceid>FETCH-proquest_journals_21033570993</originalsourceid><addsrcrecordid>eNqNysEOATEQgOFGIiF4hyauNqnWWlyFODg4OLhtRo1VqsO0G9m3twcP4PQd_r8j-tqYabaYad0ToxjvSik9L3Sem7447RHODMVKgjw06UZBvsA-oEJ5JZZPuqB3oZKMtmbGkCby7MhT5Sx432SM4F1MzsqANYNvSR_iRxyK7hV8xNHPgRhvN8f1LnsxvWuMqbxTzaFNpZ4qY_JCLZfmv-sLl_JCOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103357099</pqid></control><display><type>article</type><title>Leabra7: a Python package for modeling recurrent, biologically-realistic neural networks</title><source>Free E- Journals</source><creator>Greenidge, C Daniel ; Miller, Noam ; Norman, Kenneth A</creator><creatorcontrib>Greenidge, C Daniel ; Miller, Noam ; Norman, Kenneth A</creatorcontrib><description>Emergent is a software package that uses the AdEx neural dynamics model and LEABRA learning algorithm to simulate and train arbitrary recurrent neural network architectures in a biologically-realistic manner. We present Leabra7, a complementary Python library that implements these same algorithms. Leabra7 is developed and distributed using modern software development principles, and integrates tightly with Python's scientific stack. We demonstrate recurrent Leabra7 networks using traditional pattern-association tasks and a standard machine learning task, classifying the IRIS dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer simulation ; Machine learning ; Neural networks ; Python ; Recurrent neural networks ; Software development</subject><ispartof>arXiv.org, 2018-09</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Greenidge, C Daniel</creatorcontrib><creatorcontrib>Miller, Noam</creatorcontrib><creatorcontrib>Norman, Kenneth A</creatorcontrib><title>Leabra7: a Python package for modeling recurrent, biologically-realistic neural networks</title><title>arXiv.org</title><description>Emergent is a software package that uses the AdEx neural dynamics model and LEABRA learning algorithm to simulate and train arbitrary recurrent neural network architectures in a biologically-realistic manner. We present Leabra7, a complementary Python library that implements these same algorithms. Leabra7 is developed and distributed using modern software development principles, and integrates tightly with Python's scientific stack. We demonstrate recurrent Leabra7 networks using traditional pattern-association tasks and a standard machine learning task, classifying the IRIS dataset.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Python</subject><subject>Recurrent neural networks</subject><subject>Software development</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNysEOATEQgOFGIiF4hyauNqnWWlyFODg4OLhtRo1VqsO0G9m3twcP4PQd_r8j-tqYabaYad0ToxjvSik9L3Sem7447RHODMVKgjw06UZBvsA-oEJ5JZZPuqB3oZKMtmbGkCby7MhT5Sx432SM4F1MzsqANYNvSR_iRxyK7hV8xNHPgRhvN8f1LnsxvWuMqbxTzaFNpZ4qY_JCLZfmv-sLl_JCOQ</recordid><startdate>20180919</startdate><enddate>20180919</enddate><creator>Greenidge, C Daniel</creator><creator>Miller, Noam</creator><creator>Norman, Kenneth A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180919</creationdate><title>Leabra7: a Python package for modeling recurrent, biologically-realistic neural networks</title><author>Greenidge, C Daniel ; Miller, Noam ; Norman, Kenneth A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21033570993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Python</topic><topic>Recurrent neural networks</topic><topic>Software development</topic><toplevel>online_resources</toplevel><creatorcontrib>Greenidge, C Daniel</creatorcontrib><creatorcontrib>Miller, Noam</creatorcontrib><creatorcontrib>Norman, Kenneth A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greenidge, C Daniel</au><au>Miller, Noam</au><au>Norman, Kenneth A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Leabra7: a Python package for modeling recurrent, biologically-realistic neural networks</atitle><jtitle>arXiv.org</jtitle><date>2018-09-19</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Emergent is a software package that uses the AdEx neural dynamics model and LEABRA learning algorithm to simulate and train arbitrary recurrent neural network architectures in a biologically-realistic manner. We present Leabra7, a complementary Python library that implements these same algorithms. Leabra7 is developed and distributed using modern software development principles, and integrates tightly with Python's scientific stack. We demonstrate recurrent Leabra7 networks using traditional pattern-association tasks and a standard machine learning task, classifying the IRIS dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2103357099 |
source | Free E- Journals |
subjects | Algorithms Computer simulation Machine learning Neural networks Python Recurrent neural networks Software development |
title | Leabra7: a Python package for modeling recurrent, biologically-realistic neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Leabra7:%20a%20Python%20package%20for%20modeling%20recurrent,%20biologically-realistic%20neural%20networks&rft.jtitle=arXiv.org&rft.au=Greenidge,%20C%20Daniel&rft.date=2018-09-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2103357099%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103357099&rft_id=info:pmid/&rfr_iscdi=true |