Electroosmosis-modulated peristaltic transport in microfluidic channels

We analyze the peristaltic motion of aqueous electrolytes altered by means of applied electric fields. Handling electrolytes in typical peristaltic channel material such as polyvinyl chloride and Teflon leads to the generation of a net surface charge on the channel walls, which attracts counter-ions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2016-05, Vol.28 (5)
Hauptverfasser: Bandopadhyay, Aditya, Tripathi, Dharmendra, Chakraborty, Suman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of fluids (1994)
container_volume 28
creator Bandopadhyay, Aditya
Tripathi, Dharmendra
Chakraborty, Suman
description We analyze the peristaltic motion of aqueous electrolytes altered by means of applied electric fields. Handling electrolytes in typical peristaltic channel material such as polyvinyl chloride and Teflon leads to the generation of a net surface charge on the channel walls, which attracts counter-ions and repels co-ions from the aqueous solution, thus leading to the formation of an electrical double layer—a region of net charges near the wall. We analyze the spatial distribution of pressure and wall shear stress for a continuous wave train and single pulse peristaltic wave in the presence of an electrical (electroosmotic) body force, which acts on the net charges in the electrical double layer. We then analyze the effect of the electroosmotic body force on the particle reflux as elucidated through the net displacement of neutrally buoyant particles in the flow as the peristaltic waves progress. The impact of combined electroosmosis and peristalsis on trapping of a fluid volume (e.g., bolus) inside the travelling wave is also discussed. The present analysis goes beyond the traditional analysis, which neglects the possibility of coupling the net pumping of fluids due to peristalsis and allows us to derive general expressions for the pressure drop and flow rate in order to set up a general framework for incorporating flow control and actuation by simultaneous peristalsis and application of electric fields to aqueous solutions. It is envisaged that the results presented here may act as a model for the design of lab-on-a-chip devices.
doi_str_mv 10.1063/1.4947115
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2103250559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2103250559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ffe75ecb83dac9ff59fba0529a847d6be613fa0f51ea530d59936a98ed83dc013</originalsourceid><addsrcrecordid>eNp90EtLxDAQAOAgCq6rB_9BwZNC10nTpM1RlnUVFrzoOaR5YJa2qUkq-O_t0kUPgqcZmG8eDELXGFYYGLnHq5KXFcb0BC0w1DyvGGOnh7yCnDGCz9FFjHsAILxgC7TdtEal4H3sfHQx77weW5mMzgYTXEyyTU5lKcg-Dj6kzPVZ51Twth2dnirqXfa9aeMlOrOyjebqGJfo7XHzun7Kdy_b5_XDLlekqFJuramoUU1NtFTcWsptI4EWXNZlpVljGCZWgqXYSEpAU84Jk7w2eupQgMkS3cxzh-A_RhOT2Psx9NNKUWAgBQVK-aRuZzVdGmMwVgzBdTJ8CQzi8CeBxfFPk72bbVQuyeR8_4M_ffiFYtD2P_x38jdIRHgF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103250559</pqid></control><display><type>article</type><title>Electroosmosis-modulated peristaltic transport in microfluidic channels</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bandopadhyay, Aditya ; Tripathi, Dharmendra ; Chakraborty, Suman</creator><creatorcontrib>Bandopadhyay, Aditya ; Tripathi, Dharmendra ; Chakraborty, Suman</creatorcontrib><description>We analyze the peristaltic motion of aqueous electrolytes altered by means of applied electric fields. Handling electrolytes in typical peristaltic channel material such as polyvinyl chloride and Teflon leads to the generation of a net surface charge on the channel walls, which attracts counter-ions and repels co-ions from the aqueous solution, thus leading to the formation of an electrical double layer—a region of net charges near the wall. We analyze the spatial distribution of pressure and wall shear stress for a continuous wave train and single pulse peristaltic wave in the presence of an electrical (electroosmotic) body force, which acts on the net charges in the electrical double layer. We then analyze the effect of the electroosmotic body force on the particle reflux as elucidated through the net displacement of neutrally buoyant particles in the flow as the peristaltic waves progress. The impact of combined electroosmosis and peristalsis on trapping of a fluid volume (e.g., bolus) inside the travelling wave is also discussed. The present analysis goes beyond the traditional analysis, which neglects the possibility of coupling the net pumping of fluids due to peristalsis and allows us to derive general expressions for the pressure drop and flow rate in order to set up a general framework for incorporating flow control and actuation by simultaneous peristalsis and application of electric fields to aqueous solutions. It is envisaged that the results presented here may act as a model for the design of lab-on-a-chip devices.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4947115</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuation ; Aqueous electrolytes ; Aqueous solutions ; Computational fluid dynamics ; Continuous radiation ; Electric double layer ; Electric fields ; Electrolytes ; Flow control ; Flow velocity ; Fluid dynamics ; Lab-on-a-chip ; Materials handling ; Physics ; Polytetrafluoroethylene ; Polyvinyl chloride ; Pressure drop ; Spatial distribution ; Stress concentration ; Surface charge ; Traveling waves ; Wall shear stresses ; Wave packets</subject><ispartof>Physics of fluids (1994), 2016-05, Vol.28 (5)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ffe75ecb83dac9ff59fba0529a847d6be613fa0f51ea530d59936a98ed83dc013</citedby><cites>FETCH-LOGICAL-c327t-ffe75ecb83dac9ff59fba0529a847d6be613fa0f51ea530d59936a98ed83dc013</cites><orcidid>0000-0003-4846-8756 ; 0000-0002-5454-9766 ; 0000-0003-3371-7879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Bandopadhyay, Aditya</creatorcontrib><creatorcontrib>Tripathi, Dharmendra</creatorcontrib><creatorcontrib>Chakraborty, Suman</creatorcontrib><title>Electroosmosis-modulated peristaltic transport in microfluidic channels</title><title>Physics of fluids (1994)</title><description>We analyze the peristaltic motion of aqueous electrolytes altered by means of applied electric fields. Handling electrolytes in typical peristaltic channel material such as polyvinyl chloride and Teflon leads to the generation of a net surface charge on the channel walls, which attracts counter-ions and repels co-ions from the aqueous solution, thus leading to the formation of an electrical double layer—a region of net charges near the wall. We analyze the spatial distribution of pressure and wall shear stress for a continuous wave train and single pulse peristaltic wave in the presence of an electrical (electroosmotic) body force, which acts on the net charges in the electrical double layer. We then analyze the effect of the electroosmotic body force on the particle reflux as elucidated through the net displacement of neutrally buoyant particles in the flow as the peristaltic waves progress. The impact of combined electroosmosis and peristalsis on trapping of a fluid volume (e.g., bolus) inside the travelling wave is also discussed. The present analysis goes beyond the traditional analysis, which neglects the possibility of coupling the net pumping of fluids due to peristalsis and allows us to derive general expressions for the pressure drop and flow rate in order to set up a general framework for incorporating flow control and actuation by simultaneous peristalsis and application of electric fields to aqueous solutions. It is envisaged that the results presented here may act as a model for the design of lab-on-a-chip devices.</description><subject>Actuation</subject><subject>Aqueous electrolytes</subject><subject>Aqueous solutions</subject><subject>Computational fluid dynamics</subject><subject>Continuous radiation</subject><subject>Electric double layer</subject><subject>Electric fields</subject><subject>Electrolytes</subject><subject>Flow control</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Lab-on-a-chip</subject><subject>Materials handling</subject><subject>Physics</subject><subject>Polytetrafluoroethylene</subject><subject>Polyvinyl chloride</subject><subject>Pressure drop</subject><subject>Spatial distribution</subject><subject>Stress concentration</subject><subject>Surface charge</subject><subject>Traveling waves</subject><subject>Wall shear stresses</subject><subject>Wave packets</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAQAOAgCq6rB_9BwZNC10nTpM1RlnUVFrzoOaR5YJa2qUkq-O_t0kUPgqcZmG8eDELXGFYYGLnHq5KXFcb0BC0w1DyvGGOnh7yCnDGCz9FFjHsAILxgC7TdtEal4H3sfHQx77weW5mMzgYTXEyyTU5lKcg-Dj6kzPVZ51Twth2dnirqXfa9aeMlOrOyjebqGJfo7XHzun7Kdy_b5_XDLlekqFJuramoUU1NtFTcWsptI4EWXNZlpVljGCZWgqXYSEpAU84Jk7w2eupQgMkS3cxzh-A_RhOT2Psx9NNKUWAgBQVK-aRuZzVdGmMwVgzBdTJ8CQzi8CeBxfFPk72bbVQuyeR8_4M_ffiFYtD2P_x38jdIRHgF</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Bandopadhyay, Aditya</creator><creator>Tripathi, Dharmendra</creator><creator>Chakraborty, Suman</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4846-8756</orcidid><orcidid>https://orcid.org/0000-0002-5454-9766</orcidid><orcidid>https://orcid.org/0000-0003-3371-7879</orcidid></search><sort><creationdate>201605</creationdate><title>Electroosmosis-modulated peristaltic transport in microfluidic channels</title><author>Bandopadhyay, Aditya ; Tripathi, Dharmendra ; Chakraborty, Suman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ffe75ecb83dac9ff59fba0529a847d6be613fa0f51ea530d59936a98ed83dc013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Actuation</topic><topic>Aqueous electrolytes</topic><topic>Aqueous solutions</topic><topic>Computational fluid dynamics</topic><topic>Continuous radiation</topic><topic>Electric double layer</topic><topic>Electric fields</topic><topic>Electrolytes</topic><topic>Flow control</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Lab-on-a-chip</topic><topic>Materials handling</topic><topic>Physics</topic><topic>Polytetrafluoroethylene</topic><topic>Polyvinyl chloride</topic><topic>Pressure drop</topic><topic>Spatial distribution</topic><topic>Stress concentration</topic><topic>Surface charge</topic><topic>Traveling waves</topic><topic>Wall shear stresses</topic><topic>Wave packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandopadhyay, Aditya</creatorcontrib><creatorcontrib>Tripathi, Dharmendra</creatorcontrib><creatorcontrib>Chakraborty, Suman</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandopadhyay, Aditya</au><au>Tripathi, Dharmendra</au><au>Chakraborty, Suman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroosmosis-modulated peristaltic transport in microfluidic channels</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2016-05</date><risdate>2016</risdate><volume>28</volume><issue>5</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We analyze the peristaltic motion of aqueous electrolytes altered by means of applied electric fields. Handling electrolytes in typical peristaltic channel material such as polyvinyl chloride and Teflon leads to the generation of a net surface charge on the channel walls, which attracts counter-ions and repels co-ions from the aqueous solution, thus leading to the formation of an electrical double layer—a region of net charges near the wall. We analyze the spatial distribution of pressure and wall shear stress for a continuous wave train and single pulse peristaltic wave in the presence of an electrical (electroosmotic) body force, which acts on the net charges in the electrical double layer. We then analyze the effect of the electroosmotic body force on the particle reflux as elucidated through the net displacement of neutrally buoyant particles in the flow as the peristaltic waves progress. The impact of combined electroosmosis and peristalsis on trapping of a fluid volume (e.g., bolus) inside the travelling wave is also discussed. The present analysis goes beyond the traditional analysis, which neglects the possibility of coupling the net pumping of fluids due to peristalsis and allows us to derive general expressions for the pressure drop and flow rate in order to set up a general framework for incorporating flow control and actuation by simultaneous peristalsis and application of electric fields to aqueous solutions. It is envisaged that the results presented here may act as a model for the design of lab-on-a-chip devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4947115</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4846-8756</orcidid><orcidid>https://orcid.org/0000-0002-5454-9766</orcidid><orcidid>https://orcid.org/0000-0003-3371-7879</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2016-05, Vol.28 (5)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2103250559
source AIP Journals Complete; Alma/SFX Local Collection
subjects Actuation
Aqueous electrolytes
Aqueous solutions
Computational fluid dynamics
Continuous radiation
Electric double layer
Electric fields
Electrolytes
Flow control
Flow velocity
Fluid dynamics
Lab-on-a-chip
Materials handling
Physics
Polytetrafluoroethylene
Polyvinyl chloride
Pressure drop
Spatial distribution
Stress concentration
Surface charge
Traveling waves
Wall shear stresses
Wave packets
title Electroosmosis-modulated peristaltic transport in microfluidic channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroosmosis-modulated%20peristaltic%20transport%20in%20microfluidic%20channels&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Bandopadhyay,%20Aditya&rft.date=2016-05&rft.volume=28&rft.issue=5&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.4947115&rft_dat=%3Cproquest_cross%3E2103250559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103250559&rft_id=info:pmid/&rfr_iscdi=true