Green laser sintering of copper oxide (CuO) nano particle (NP) film to form Cu conductive lines

Copper oxide (CuO) nanoparticle (NP) ink is a potential candidate for low-cost alternatives to other metal-based nano-particle inks (e.g., Au, Ag.) in printed electronics. To obtain Cu patterns from CuO NP ink, CuO NP inks should be converted to Cu particles, and be fused to form a connected conduct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2018-09, Vol.8 (9), p.095008-095008-13
Hauptverfasser: Rahman, Md. Khalilur, Lu, Zhao, Kwon, Kye-Si
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 095008-13
container_issue 9
container_start_page 095008
container_title AIP advances
container_volume 8
creator Rahman, Md. Khalilur
Lu, Zhao
Kwon, Kye-Si
description Copper oxide (CuO) nanoparticle (NP) ink is a potential candidate for low-cost alternatives to other metal-based nano-particle inks (e.g., Au, Ag.) in printed electronics. To obtain Cu patterns from CuO NP ink, CuO NP inks should be converted to Cu particles, and be fused to form a connected conductive line. For this purpose, photonic sintering methods have been widely used, which generate the heat required for sintering via the absorption of light. In this study, we used continuous wave (CW) green laser with 532 nm wavelength, since the laser has the advantage of selective sintering by irradiation of light only on the target place. We investigated the optimal sintering parameters, such as laser power and scanning speed, using the green laser, in order to obtain low resistivity. We also investigated the pre-treatment conditions, such as pre-baking, which is required to evaporate solvents in the ink. We found that over-baking of deposited film will adversely affect the sintering, because film can be easily damaged from laser irradiation. As a result of laser sintering, we obtained the resistivity of (9.5 and 71.6) μΩ·cm when the pre-baked thicknesses of CuO films were (546 and 889) nm, respectively. In such cases, the thicknesses were significantly reduced to (141 and 270) nm, respectively.
doi_str_mv 10.1063/1.5047562
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2103250479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_26918620ec2148f19db71f4323c4d379</doaj_id><sourcerecordid>2103250479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-31778a4275978ae7cb442198f51c518654469c67016abc460fed5b5feee2849d3</originalsourceid><addsrcrecordid>eNp9kUFLwzAUx4soOHQHv0HAixM6kzRJm6MMnYPhPOg5ZGkyMrqkJu3Qb2_mxhQEc3nhzy-_98jLsisExwiy4g6NKSQlZfgkG2BEq7zAmJ3-up9nwxjXMB3CEazIIBPToLUDjYw6gGhdp4N1K-ANUL5tU-Y_bK3BzaRfjICTzoNWhs6qJmXPLyNgbLMBnQfGhw2Y9OmVq3vV2a0GjXU6XmZnRjZRDw_1Int7fHidPOXzxXQ2uZ_ninDS5QUqy0oSXFKeqi7VkhCMeGUoUhRVjBLCuGIlREwuFWHQ6JouqdFa44rwurjIZntv7eVatMFuZPgUXlrxHfiwEoe5BWY8GTHUCiNSGcTrZYkMKXChSF2UPLmu9642-Pdex06sfR9cGl9gBAu8--QdNdpTKvgYgzbHrgiK3ToEEod1JPZ2z0ZlO9lZ747w1ocfULS1-Q_-a_4Cf4yUtQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103250479</pqid></control><display><type>article</type><title>Green laser sintering of copper oxide (CuO) nano particle (NP) film to form Cu conductive lines</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rahman, Md. Khalilur ; Lu, Zhao ; Kwon, Kye-Si</creator><creatorcontrib>Rahman, Md. Khalilur ; Lu, Zhao ; Kwon, Kye-Si</creatorcontrib><description>Copper oxide (CuO) nanoparticle (NP) ink is a potential candidate for low-cost alternatives to other metal-based nano-particle inks (e.g., Au, Ag.) in printed electronics. To obtain Cu patterns from CuO NP ink, CuO NP inks should be converted to Cu particles, and be fused to form a connected conductive line. For this purpose, photonic sintering methods have been widely used, which generate the heat required for sintering via the absorption of light. In this study, we used continuous wave (CW) green laser with 532 nm wavelength, since the laser has the advantage of selective sintering by irradiation of light only on the target place. We investigated the optimal sintering parameters, such as laser power and scanning speed, using the green laser, in order to obtain low resistivity. We also investigated the pre-treatment conditions, such as pre-baking, which is required to evaporate solvents in the ink. We found that over-baking of deposited film will adversely affect the sintering, because film can be easily damaged from laser irradiation. As a result of laser sintering, we obtained the resistivity of (9.5 and 71.6) μΩ·cm when the pre-baked thicknesses of CuO films were (546 and 889) nm, respectively. In such cases, the thicknesses were significantly reduced to (141 and 270) nm, respectively.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5047562</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Baking ; Continuous radiation ; Continuous sintering ; Copper ; Copper oxides ; Electrical resistivity ; Gold ; Inks ; Laser damage ; Laser sintering ; Photonics ; Pretreatment ; Radiation damage ; Rapid prototyping ; Silver</subject><ispartof>AIP advances, 2018-09, Vol.8 (9), p.095008-095008-13</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-31778a4275978ae7cb442198f51c518654469c67016abc460fed5b5feee2849d3</citedby><cites>FETCH-LOGICAL-c494t-31778a4275978ae7cb442198f51c518654469c67016abc460fed5b5feee2849d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Rahman, Md. Khalilur</creatorcontrib><creatorcontrib>Lu, Zhao</creatorcontrib><creatorcontrib>Kwon, Kye-Si</creatorcontrib><title>Green laser sintering of copper oxide (CuO) nano particle (NP) film to form Cu conductive lines</title><title>AIP advances</title><description>Copper oxide (CuO) nanoparticle (NP) ink is a potential candidate for low-cost alternatives to other metal-based nano-particle inks (e.g., Au, Ag.) in printed electronics. To obtain Cu patterns from CuO NP ink, CuO NP inks should be converted to Cu particles, and be fused to form a connected conductive line. For this purpose, photonic sintering methods have been widely used, which generate the heat required for sintering via the absorption of light. In this study, we used continuous wave (CW) green laser with 532 nm wavelength, since the laser has the advantage of selective sintering by irradiation of light only on the target place. We investigated the optimal sintering parameters, such as laser power and scanning speed, using the green laser, in order to obtain low resistivity. We also investigated the pre-treatment conditions, such as pre-baking, which is required to evaporate solvents in the ink. We found that over-baking of deposited film will adversely affect the sintering, because film can be easily damaged from laser irradiation. As a result of laser sintering, we obtained the resistivity of (9.5 and 71.6) μΩ·cm when the pre-baked thicknesses of CuO films were (546 and 889) nm, respectively. In such cases, the thicknesses were significantly reduced to (141 and 270) nm, respectively.</description><subject>Baking</subject><subject>Continuous radiation</subject><subject>Continuous sintering</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Electrical resistivity</subject><subject>Gold</subject><subject>Inks</subject><subject>Laser damage</subject><subject>Laser sintering</subject><subject>Photonics</subject><subject>Pretreatment</subject><subject>Radiation damage</subject><subject>Rapid prototyping</subject><subject>Silver</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUFLwzAUx4soOHQHv0HAixM6kzRJm6MMnYPhPOg5ZGkyMrqkJu3Qb2_mxhQEc3nhzy-_98jLsisExwiy4g6NKSQlZfgkG2BEq7zAmJ3-up9nwxjXMB3CEazIIBPToLUDjYw6gGhdp4N1K-ANUL5tU-Y_bK3BzaRfjICTzoNWhs6qJmXPLyNgbLMBnQfGhw2Y9OmVq3vV2a0GjXU6XmZnRjZRDw_1Int7fHidPOXzxXQ2uZ_ninDS5QUqy0oSXFKeqi7VkhCMeGUoUhRVjBLCuGIlREwuFWHQ6JouqdFa44rwurjIZntv7eVatMFuZPgUXlrxHfiwEoe5BWY8GTHUCiNSGcTrZYkMKXChSF2UPLmu9642-Pdex06sfR9cGl9gBAu8--QdNdpTKvgYgzbHrgiK3ToEEod1JPZ2z0ZlO9lZ747w1ocfULS1-Q_-a_4Cf4yUtQ</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Rahman, Md. Khalilur</creator><creator>Lu, Zhao</creator><creator>Kwon, Kye-Si</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>201809</creationdate><title>Green laser sintering of copper oxide (CuO) nano particle (NP) film to form Cu conductive lines</title><author>Rahman, Md. Khalilur ; Lu, Zhao ; Kwon, Kye-Si</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-31778a4275978ae7cb442198f51c518654469c67016abc460fed5b5feee2849d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Baking</topic><topic>Continuous radiation</topic><topic>Continuous sintering</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Electrical resistivity</topic><topic>Gold</topic><topic>Inks</topic><topic>Laser damage</topic><topic>Laser sintering</topic><topic>Photonics</topic><topic>Pretreatment</topic><topic>Radiation damage</topic><topic>Rapid prototyping</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Md. Khalilur</creatorcontrib><creatorcontrib>Lu, Zhao</creatorcontrib><creatorcontrib>Kwon, Kye-Si</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Md. Khalilur</au><au>Lu, Zhao</au><au>Kwon, Kye-Si</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green laser sintering of copper oxide (CuO) nano particle (NP) film to form Cu conductive lines</atitle><jtitle>AIP advances</jtitle><date>2018-09</date><risdate>2018</risdate><volume>8</volume><issue>9</issue><spage>095008</spage><epage>095008-13</epage><pages>095008-095008-13</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Copper oxide (CuO) nanoparticle (NP) ink is a potential candidate for low-cost alternatives to other metal-based nano-particle inks (e.g., Au, Ag.) in printed electronics. To obtain Cu patterns from CuO NP ink, CuO NP inks should be converted to Cu particles, and be fused to form a connected conductive line. For this purpose, photonic sintering methods have been widely used, which generate the heat required for sintering via the absorption of light. In this study, we used continuous wave (CW) green laser with 532 nm wavelength, since the laser has the advantage of selective sintering by irradiation of light only on the target place. We investigated the optimal sintering parameters, such as laser power and scanning speed, using the green laser, in order to obtain low resistivity. We also investigated the pre-treatment conditions, such as pre-baking, which is required to evaporate solvents in the ink. We found that over-baking of deposited film will adversely affect the sintering, because film can be easily damaged from laser irradiation. As a result of laser sintering, we obtained the resistivity of (9.5 and 71.6) μΩ·cm when the pre-baked thicknesses of CuO films were (546 and 889) nm, respectively. In such cases, the thicknesses were significantly reduced to (141 and 270) nm, respectively.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5047562</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2018-09, Vol.8 (9), p.095008-095008-13
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2103250479
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Baking
Continuous radiation
Continuous sintering
Copper
Copper oxides
Electrical resistivity
Gold
Inks
Laser damage
Laser sintering
Photonics
Pretreatment
Radiation damage
Rapid prototyping
Silver
title Green laser sintering of copper oxide (CuO) nano particle (NP) film to form Cu conductive lines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20laser%20sintering%20of%20copper%20oxide%20(CuO)%20nano%20particle%20(NP)%20film%20to%20form%20Cu%20conductive%20lines&rft.jtitle=AIP%20advances&rft.au=Rahman,%20Md.%20Khalilur&rft.date=2018-09&rft.volume=8&rft.issue=9&rft.spage=095008&rft.epage=095008-13&rft.pages=095008-095008-13&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5047562&rft_dat=%3Cproquest_doaj_%3E2103250479%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103250479&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_26918620ec2148f19db71f4323c4d379&rfr_iscdi=true