Measuring the wall depletion length of nanoconfined DNA
Efforts to study the polymer physics of DNA confined in nanochannels have been stymied by a lack of consensus regarding its wall depletion length. We have measured this quantity in 38 nm wide, square silicon dioxide nanochannels for five different ionic strengths between 15 mM and 75 mM. Experiments...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2018-09, Vol.149 (10), p.104901 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 104901 |
container_title | The Journal of chemical physics |
container_volume | 149 |
creator | Bhandari, Aditya Bikram Reifenberger, Jeffrey G. Chuang, Hui-Min Cao, Han Dorfman, Kevin D. |
description | Efforts to study the polymer physics of DNA confined in nanochannels have been stymied by a lack of consensus regarding its wall depletion length. We have measured this quantity in 38 nm wide, square silicon dioxide nanochannels for five different ionic strengths between 15 mM and 75 mM. Experiments used the Bionano Genomics Irys platform for massively parallel data acquisition, attenuating the effect of the sequence-dependent persistence length and finite-length effects by using nick-labeled E. coli genomic DNA with contour length separations of at least 30 µm (88 325 base pairs) between nick pairs. Over 5 × 106 measurements of the fractional extension were obtained from 39 291 labeled DNA molecules. Analyzing the stretching via Odijk’s theory for a strongly confined wormlike chain yielded a linear relationship between the depletion length and the Debye length. This simple linear fit to the experimental data exhibits the same qualitative trend as previously defined analytical models for the depletion length but now quantitatively captures the experimental data. |
doi_str_mv | 10.1063/1.5040458 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2103250357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2103250357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-54824e6416026b1e69c79fa6a87957543a94d063fa62849709200f436b75c4bc3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMotlYX_gEZcKUw9eY92QilPqHqRtchk2baKdOkzkPx35vSWnTj6sI9H-eeexA6xTDEIOgVHnJgwHi2h_oYMpVKoWAf9QEITpUA0UNHTbMAACwJO0Q9GgUFhPSRfHKm6erSz5J27pJPU1XJ1K0q15bBJ5Xzs3aehCLxxgcbfFF6N01unkfH6KAwVeNOtnOA3u5uX8cP6eTl_nE8mqQ2RmpTzjLCnGBYABE5dkJZqQojTCYVl5xRo9g0vhBXJGNKgiIABaMil9yy3NIBut74rrp86abW-bY2lV7V5dLUXzqYUv9VfDnXs_ChBaZcMBYNzrcGdXjvXNPqRehqHzNrgoESDpTLSF1sKFuHpqldsbuAQa871lhvO47s2e9IO_Kn1AhcboDGlq1ZF_mP2zfXkYGI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103250357</pqid></control><display><type>article</type><title>Measuring the wall depletion length of nanoconfined DNA</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bhandari, Aditya Bikram ; Reifenberger, Jeffrey G. ; Chuang, Hui-Min ; Cao, Han ; Dorfman, Kevin D.</creator><creatorcontrib>Bhandari, Aditya Bikram ; Reifenberger, Jeffrey G. ; Chuang, Hui-Min ; Cao, Han ; Dorfman, Kevin D.</creatorcontrib><description>Efforts to study the polymer physics of DNA confined in nanochannels have been stymied by a lack of consensus regarding its wall depletion length. We have measured this quantity in 38 nm wide, square silicon dioxide nanochannels for five different ionic strengths between 15 mM and 75 mM. Experiments used the Bionano Genomics Irys platform for massively parallel data acquisition, attenuating the effect of the sequence-dependent persistence length and finite-length effects by using nick-labeled E. coli genomic DNA with contour length separations of at least 30 µm (88 325 base pairs) between nick pairs. Over 5 × 106 measurements of the fractional extension were obtained from 39 291 labeled DNA molecules. Analyzing the stretching via Odijk’s theory for a strongly confined wormlike chain yielded a linear relationship between the depletion length and the Debye length. This simple linear fit to the experimental data exhibits the same qualitative trend as previously defined analytical models for the depletion length but now quantitatively captures the experimental data.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5040458</identifier><identifier>PMID: 30219022</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Debye length ; Deoxyribonucleic acid ; Depletion ; DNA ; DNA - chemistry ; E coli ; Mathematical models ; Models, Theoretical ; Nanochannels ; Nanostructures - chemistry ; Physics ; Polymer physics ; Qualitative analysis ; Silicon dioxide ; Silicon Dioxide - chemistry</subject><ispartof>The Journal of chemical physics, 2018-09, Vol.149 (10), p.104901</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><rights>Copyright © 2018 Author(s) 2018 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-54824e6416026b1e69c79fa6a87957543a94d063fa62849709200f436b75c4bc3</citedby><cites>FETCH-LOGICAL-c504t-54824e6416026b1e69c79fa6a87957543a94d063fa62849709200f436b75c4bc3</cites><orcidid>0000-0003-0065-5157 ; 0000000300655157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5040458$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30219022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhandari, Aditya Bikram</creatorcontrib><creatorcontrib>Reifenberger, Jeffrey G.</creatorcontrib><creatorcontrib>Chuang, Hui-Min</creatorcontrib><creatorcontrib>Cao, Han</creatorcontrib><creatorcontrib>Dorfman, Kevin D.</creatorcontrib><title>Measuring the wall depletion length of nanoconfined DNA</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Efforts to study the polymer physics of DNA confined in nanochannels have been stymied by a lack of consensus regarding its wall depletion length. We have measured this quantity in 38 nm wide, square silicon dioxide nanochannels for five different ionic strengths between 15 mM and 75 mM. Experiments used the Bionano Genomics Irys platform for massively parallel data acquisition, attenuating the effect of the sequence-dependent persistence length and finite-length effects by using nick-labeled E. coli genomic DNA with contour length separations of at least 30 µm (88 325 base pairs) between nick pairs. Over 5 × 106 measurements of the fractional extension were obtained from 39 291 labeled DNA molecules. Analyzing the stretching via Odijk’s theory for a strongly confined wormlike chain yielded a linear relationship between the depletion length and the Debye length. This simple linear fit to the experimental data exhibits the same qualitative trend as previously defined analytical models for the depletion length but now quantitatively captures the experimental data.</description><subject>Debye length</subject><subject>Deoxyribonucleic acid</subject><subject>Depletion</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>E coli</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Nanochannels</subject><subject>Nanostructures - chemistry</subject><subject>Physics</subject><subject>Polymer physics</subject><subject>Qualitative analysis</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - chemistry</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEUhYMotlYX_gEZcKUw9eY92QilPqHqRtchk2baKdOkzkPx35vSWnTj6sI9H-eeexA6xTDEIOgVHnJgwHi2h_oYMpVKoWAf9QEITpUA0UNHTbMAACwJO0Q9GgUFhPSRfHKm6erSz5J27pJPU1XJ1K0q15bBJ5Xzs3aehCLxxgcbfFF6N01unkfH6KAwVeNOtnOA3u5uX8cP6eTl_nE8mqQ2RmpTzjLCnGBYABE5dkJZqQojTCYVl5xRo9g0vhBXJGNKgiIABaMil9yy3NIBut74rrp86abW-bY2lV7V5dLUXzqYUv9VfDnXs_ChBaZcMBYNzrcGdXjvXNPqRehqHzNrgoESDpTLSF1sKFuHpqldsbuAQa871lhvO47s2e9IO_Kn1AhcboDGlq1ZF_mP2zfXkYGI</recordid><startdate>20180914</startdate><enddate>20180914</enddate><creator>Bhandari, Aditya Bikram</creator><creator>Reifenberger, Jeffrey G.</creator><creator>Chuang, Hui-Min</creator><creator>Cao, Han</creator><creator>Dorfman, Kevin D.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0065-5157</orcidid><orcidid>https://orcid.org/0000000300655157</orcidid></search><sort><creationdate>20180914</creationdate><title>Measuring the wall depletion length of nanoconfined DNA</title><author>Bhandari, Aditya Bikram ; Reifenberger, Jeffrey G. ; Chuang, Hui-Min ; Cao, Han ; Dorfman, Kevin D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-54824e6416026b1e69c79fa6a87957543a94d063fa62849709200f436b75c4bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Debye length</topic><topic>Deoxyribonucleic acid</topic><topic>Depletion</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>E coli</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Nanochannels</topic><topic>Nanostructures - chemistry</topic><topic>Physics</topic><topic>Polymer physics</topic><topic>Qualitative analysis</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhandari, Aditya Bikram</creatorcontrib><creatorcontrib>Reifenberger, Jeffrey G.</creatorcontrib><creatorcontrib>Chuang, Hui-Min</creatorcontrib><creatorcontrib>Cao, Han</creatorcontrib><creatorcontrib>Dorfman, Kevin D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhandari, Aditya Bikram</au><au>Reifenberger, Jeffrey G.</au><au>Chuang, Hui-Min</au><au>Cao, Han</au><au>Dorfman, Kevin D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the wall depletion length of nanoconfined DNA</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-09-14</date><risdate>2018</risdate><volume>149</volume><issue>10</issue><spage>104901</spage><pages>104901-</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Efforts to study the polymer physics of DNA confined in nanochannels have been stymied by a lack of consensus regarding its wall depletion length. We have measured this quantity in 38 nm wide, square silicon dioxide nanochannels for five different ionic strengths between 15 mM and 75 mM. Experiments used the Bionano Genomics Irys platform for massively parallel data acquisition, attenuating the effect of the sequence-dependent persistence length and finite-length effects by using nick-labeled E. coli genomic DNA with contour length separations of at least 30 µm (88 325 base pairs) between nick pairs. Over 5 × 106 measurements of the fractional extension were obtained from 39 291 labeled DNA molecules. Analyzing the stretching via Odijk’s theory for a strongly confined wormlike chain yielded a linear relationship between the depletion length and the Debye length. This simple linear fit to the experimental data exhibits the same qualitative trend as previously defined analytical models for the depletion length but now quantitatively captures the experimental data.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30219022</pmid><doi>10.1063/1.5040458</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0065-5157</orcidid><orcidid>https://orcid.org/0000000300655157</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2018-09, Vol.149 (10), p.104901 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2103250357 |
source | MEDLINE; AIP Journals Complete; Alma/SFX Local Collection |
subjects | Debye length Deoxyribonucleic acid Depletion DNA DNA - chemistry E coli Mathematical models Models, Theoretical Nanochannels Nanostructures - chemistry Physics Polymer physics Qualitative analysis Silicon dioxide Silicon Dioxide - chemistry |
title | Measuring the wall depletion length of nanoconfined DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20wall%20depletion%20length%20of%20nanoconfined%20DNA&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Bhandari,%20Aditya%20Bikram&rft.date=2018-09-14&rft.volume=149&rft.issue=10&rft.spage=104901&rft.pages=104901-&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5040458&rft_dat=%3Cproquest_pubme%3E2103250357%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103250357&rft_id=info:pmid/30219022&rfr_iscdi=true |