Broken C-shaped extinction curve and near-limit flame behaviors of low Lewis number counterflow flames under microgravity
To examine the effect of Lewis number on the extinction boundary, flame regimes, and the formation of sporadic flames, microgravity experiments on counterflow flames for CH4/O2/Kr (Le ≈ 0.7–0.8) and CH4/O2/Xe (Le ≈ 0.5) mixtures, and three types of computations, which are one-dimensional computation...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2018-08, Vol.194, p.343-351 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 351 |
---|---|
container_issue | |
container_start_page | 343 |
container_title | Combustion and flame |
container_volume | 194 |
creator | Okuno, Tomoya Akiba, Takaki Nakamura, Hisashi Fursenko, Roman Minaev, Sergey Tezuka, Takuya Hasegawa, Susumu Kikuchi, Masao Maruta, Kaoru |
description | To examine the effect of Lewis number on the extinction boundary, flame regimes, and the formation of sporadic flames, microgravity experiments on counterflow flames for CH4/O2/Kr (Le ≈ 0.7–0.8) and CH4/O2/Xe (Le ≈ 0.5) mixtures, and three types of computations, which are one-dimensional computations with a PREMIX-based code using detailed chemistry, and three- and one-dimensional computations with the thermal-diffusion model using an overall one-step reaction were conducted. In the microgravity experiments, planar flames, planar flames with propagating edges, planar flames with receding edges, star-shaped flames, cellular flames, and sporadic flames were identified, and their regions of existence in the equivalence ratio-stretch rate plane were obtained. Sporadic flames were formed for Xe mixtures but not for Kr mixtures in the experiments. Similarly, sporadic flames were formed at Le = 0.50 but not at Le = 0.75 in the three-dimensional computations with the thermal-diffusion model. Also, the flame regime of sporadic flames extended far beyond the extinction boundaries obtained in the one-dimensional computations in both experiments and the three-dimensional computations. Furthermore, a comparison of the sporadic flames and flame balls in the three-dimensional computations showed that sporadic flames are intermediate combustion modes that segue flame balls to propagating flames. |
doi_str_mv | 10.1016/j.combustflame.2018.05.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2103114557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218018302086</els_id><sourcerecordid>2103114557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-2c98e298a048eae9ea9bea2b4bf12c571489e75a45910146a7d6d824e15757573</originalsourceid><addsrcrecordid>eNqNUDtPwzAQthBIlMJ_sGBOsB07DzYoT6kSC8yW41yoS2MX22npvydpGRjRDTd8r7sPoUtKUkpofr1MtevqPsR2pTpIGaFlSkRKKD9CEypEnrCK0WM0IYSShNGSnKKzEJaEkIJn2QTt7rz7BItnSVioNTQYvqOxOhpnse79BrCyDbagfLIynYl4H4RrWKiNcT5g1-KV2-I5bE3Atu9q8Fi73kbw7Qjs-QH3thmAzmjvPvwgjbtzdNKqVYCL3z1F748Pb7PnZP769DK7nSea5ywmTFclsKpUhJegoAJV1aBYzeuWMi0KyssKCqG4qIZGeK6KJm9KxoGKYpxsiq4OvmvvvnoIUS5d7-0QKRklGaVc7Fk3B9ZwYAgeWrn2plN-JymRY9VyKf9WLceqJRFyyBzE9wcxDH9sDHgZtAGroTEedJSNM_-x-QF6C5B0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103114557</pqid></control><display><type>article</type><title>Broken C-shaped extinction curve and near-limit flame behaviors of low Lewis number counterflow flames under microgravity</title><source>Elsevier ScienceDirect Journals</source><creator>Okuno, Tomoya ; Akiba, Takaki ; Nakamura, Hisashi ; Fursenko, Roman ; Minaev, Sergey ; Tezuka, Takuya ; Hasegawa, Susumu ; Kikuchi, Masao ; Maruta, Kaoru</creator><creatorcontrib>Okuno, Tomoya ; Akiba, Takaki ; Nakamura, Hisashi ; Fursenko, Roman ; Minaev, Sergey ; Tezuka, Takuya ; Hasegawa, Susumu ; Kikuchi, Masao ; Maruta, Kaoru</creatorcontrib><description>To examine the effect of Lewis number on the extinction boundary, flame regimes, and the formation of sporadic flames, microgravity experiments on counterflow flames for CH4/O2/Kr (Le ≈ 0.7–0.8) and CH4/O2/Xe (Le ≈ 0.5) mixtures, and three types of computations, which are one-dimensional computations with a PREMIX-based code using detailed chemistry, and three- and one-dimensional computations with the thermal-diffusion model using an overall one-step reaction were conducted. In the microgravity experiments, planar flames, planar flames with propagating edges, planar flames with receding edges, star-shaped flames, cellular flames, and sporadic flames were identified, and their regions of existence in the equivalence ratio-stretch rate plane were obtained. Sporadic flames were formed for Xe mixtures but not for Kr mixtures in the experiments. Similarly, sporadic flames were formed at Le = 0.50 but not at Le = 0.75 in the three-dimensional computations with the thermal-diffusion model. Also, the flame regime of sporadic flames extended far beyond the extinction boundaries obtained in the one-dimensional computations in both experiments and the three-dimensional computations. Furthermore, a comparison of the sporadic flames and flame balls in the three-dimensional computations showed that sporadic flames are intermediate combustion modes that segue flame balls to propagating flames.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2018.05.014</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Boundary layer ; Counterflow ; Counterflow premixed flames ; Equivalence ratio ; Fires ; Flame ball ; Flammability limit ; Fluid dynamics ; Mathematical models ; Methane ; Microgravity ; Microgravity combustion ; Organic chemistry ; Radiative extinction ; Thermal diffusion ; Three dimensional models ; Weightlessness</subject><ispartof>Combustion and flame, 2018-08, Vol.194, p.343-351</ispartof><rights>2018 The Combustion Institute</rights><rights>Copyright Elsevier BV Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-2c98e298a048eae9ea9bea2b4bf12c571489e75a45910146a7d6d824e15757573</citedby><cites>FETCH-LOGICAL-c462t-2c98e298a048eae9ea9bea2b4bf12c571489e75a45910146a7d6d824e15757573</cites><orcidid>0000-0001-7832-2411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218018302086$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Okuno, Tomoya</creatorcontrib><creatorcontrib>Akiba, Takaki</creatorcontrib><creatorcontrib>Nakamura, Hisashi</creatorcontrib><creatorcontrib>Fursenko, Roman</creatorcontrib><creatorcontrib>Minaev, Sergey</creatorcontrib><creatorcontrib>Tezuka, Takuya</creatorcontrib><creatorcontrib>Hasegawa, Susumu</creatorcontrib><creatorcontrib>Kikuchi, Masao</creatorcontrib><creatorcontrib>Maruta, Kaoru</creatorcontrib><title>Broken C-shaped extinction curve and near-limit flame behaviors of low Lewis number counterflow flames under microgravity</title><title>Combustion and flame</title><description>To examine the effect of Lewis number on the extinction boundary, flame regimes, and the formation of sporadic flames, microgravity experiments on counterflow flames for CH4/O2/Kr (Le ≈ 0.7–0.8) and CH4/O2/Xe (Le ≈ 0.5) mixtures, and three types of computations, which are one-dimensional computations with a PREMIX-based code using detailed chemistry, and three- and one-dimensional computations with the thermal-diffusion model using an overall one-step reaction were conducted. In the microgravity experiments, planar flames, planar flames with propagating edges, planar flames with receding edges, star-shaped flames, cellular flames, and sporadic flames were identified, and their regions of existence in the equivalence ratio-stretch rate plane were obtained. Sporadic flames were formed for Xe mixtures but not for Kr mixtures in the experiments. Similarly, sporadic flames were formed at Le = 0.50 but not at Le = 0.75 in the three-dimensional computations with the thermal-diffusion model. Also, the flame regime of sporadic flames extended far beyond the extinction boundaries obtained in the one-dimensional computations in both experiments and the three-dimensional computations. Furthermore, a comparison of the sporadic flames and flame balls in the three-dimensional computations showed that sporadic flames are intermediate combustion modes that segue flame balls to propagating flames.</description><subject>Boundary layer</subject><subject>Counterflow</subject><subject>Counterflow premixed flames</subject><subject>Equivalence ratio</subject><subject>Fires</subject><subject>Flame ball</subject><subject>Flammability limit</subject><subject>Fluid dynamics</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Microgravity</subject><subject>Microgravity combustion</subject><subject>Organic chemistry</subject><subject>Radiative extinction</subject><subject>Thermal diffusion</subject><subject>Three dimensional models</subject><subject>Weightlessness</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNUDtPwzAQthBIlMJ_sGBOsB07DzYoT6kSC8yW41yoS2MX22npvydpGRjRDTd8r7sPoUtKUkpofr1MtevqPsR2pTpIGaFlSkRKKD9CEypEnrCK0WM0IYSShNGSnKKzEJaEkIJn2QTt7rz7BItnSVioNTQYvqOxOhpnse79BrCyDbagfLIynYl4H4RrWKiNcT5g1-KV2-I5bE3Atu9q8Fi73kbw7Qjs-QH3thmAzmjvPvwgjbtzdNKqVYCL3z1F748Pb7PnZP769DK7nSea5ywmTFclsKpUhJegoAJV1aBYzeuWMi0KyssKCqG4qIZGeK6KJm9KxoGKYpxsiq4OvmvvvnoIUS5d7-0QKRklGaVc7Fk3B9ZwYAgeWrn2plN-JymRY9VyKf9WLceqJRFyyBzE9wcxDH9sDHgZtAGroTEedJSNM_-x-QF6C5B0</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Okuno, Tomoya</creator><creator>Akiba, Takaki</creator><creator>Nakamura, Hisashi</creator><creator>Fursenko, Roman</creator><creator>Minaev, Sergey</creator><creator>Tezuka, Takuya</creator><creator>Hasegawa, Susumu</creator><creator>Kikuchi, Masao</creator><creator>Maruta, Kaoru</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7832-2411</orcidid></search><sort><creationdate>20180801</creationdate><title>Broken C-shaped extinction curve and near-limit flame behaviors of low Lewis number counterflow flames under microgravity</title><author>Okuno, Tomoya ; Akiba, Takaki ; Nakamura, Hisashi ; Fursenko, Roman ; Minaev, Sergey ; Tezuka, Takuya ; Hasegawa, Susumu ; Kikuchi, Masao ; Maruta, Kaoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-2c98e298a048eae9ea9bea2b4bf12c571489e75a45910146a7d6d824e15757573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary layer</topic><topic>Counterflow</topic><topic>Counterflow premixed flames</topic><topic>Equivalence ratio</topic><topic>Fires</topic><topic>Flame ball</topic><topic>Flammability limit</topic><topic>Fluid dynamics</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Microgravity</topic><topic>Microgravity combustion</topic><topic>Organic chemistry</topic><topic>Radiative extinction</topic><topic>Thermal diffusion</topic><topic>Three dimensional models</topic><topic>Weightlessness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okuno, Tomoya</creatorcontrib><creatorcontrib>Akiba, Takaki</creatorcontrib><creatorcontrib>Nakamura, Hisashi</creatorcontrib><creatorcontrib>Fursenko, Roman</creatorcontrib><creatorcontrib>Minaev, Sergey</creatorcontrib><creatorcontrib>Tezuka, Takuya</creatorcontrib><creatorcontrib>Hasegawa, Susumu</creatorcontrib><creatorcontrib>Kikuchi, Masao</creatorcontrib><creatorcontrib>Maruta, Kaoru</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okuno, Tomoya</au><au>Akiba, Takaki</au><au>Nakamura, Hisashi</au><au>Fursenko, Roman</au><au>Minaev, Sergey</au><au>Tezuka, Takuya</au><au>Hasegawa, Susumu</au><au>Kikuchi, Masao</au><au>Maruta, Kaoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broken C-shaped extinction curve and near-limit flame behaviors of low Lewis number counterflow flames under microgravity</atitle><jtitle>Combustion and flame</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>194</volume><spage>343</spage><epage>351</epage><pages>343-351</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>To examine the effect of Lewis number on the extinction boundary, flame regimes, and the formation of sporadic flames, microgravity experiments on counterflow flames for CH4/O2/Kr (Le ≈ 0.7–0.8) and CH4/O2/Xe (Le ≈ 0.5) mixtures, and three types of computations, which are one-dimensional computations with a PREMIX-based code using detailed chemistry, and three- and one-dimensional computations with the thermal-diffusion model using an overall one-step reaction were conducted. In the microgravity experiments, planar flames, planar flames with propagating edges, planar flames with receding edges, star-shaped flames, cellular flames, and sporadic flames were identified, and their regions of existence in the equivalence ratio-stretch rate plane were obtained. Sporadic flames were formed for Xe mixtures but not for Kr mixtures in the experiments. Similarly, sporadic flames were formed at Le = 0.50 but not at Le = 0.75 in the three-dimensional computations with the thermal-diffusion model. Also, the flame regime of sporadic flames extended far beyond the extinction boundaries obtained in the one-dimensional computations in both experiments and the three-dimensional computations. Furthermore, a comparison of the sporadic flames and flame balls in the three-dimensional computations showed that sporadic flames are intermediate combustion modes that segue flame balls to propagating flames.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2018.05.014</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7832-2411</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2018-08, Vol.194, p.343-351 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_proquest_journals_2103114557 |
source | Elsevier ScienceDirect Journals |
subjects | Boundary layer Counterflow Counterflow premixed flames Equivalence ratio Fires Flame ball Flammability limit Fluid dynamics Mathematical models Methane Microgravity Microgravity combustion Organic chemistry Radiative extinction Thermal diffusion Three dimensional models Weightlessness |
title | Broken C-shaped extinction curve and near-limit flame behaviors of low Lewis number counterflow flames under microgravity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broken%20C-shaped%20extinction%20curve%20and%20near-limit%20flame%20behaviors%20of%20low%20Lewis%20number%20counterflow%20flames%20under%20microgravity&rft.jtitle=Combustion%20and%20flame&rft.au=Okuno,%20Tomoya&rft.date=2018-08-01&rft.volume=194&rft.spage=343&rft.epage=351&rft.pages=343-351&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2018.05.014&rft_dat=%3Cproquest_cross%3E2103114557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103114557&rft_id=info:pmid/&rft_els_id=S0010218018302086&rfr_iscdi=true |