Buckling analysis of skew magneto-electro-thermo-elastic nanoplates considering surface energy layers and utilizing the Galerkin method
In the present study, buckling analysis of skew magneto-electro-thermo-elastic (METE) nanoplates is carried out by the surface layers and nonlocal small-scale hypotheses. The equilibrium governing skew METE nanoplates is attained via the refined plate hypothesis; then, the equations of motion are ob...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2018-10, Vol.124 (10), p.1-15, Article 681 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 124 |
creator | Karimi, Morteza Shahidi, Ali Reza |
description | In the present study, buckling analysis of skew magneto-electro-thermo-elastic (METE) nanoplates is carried out by the surface layers and nonlocal small-scale hypotheses. The equilibrium governing skew METE nanoplates is attained via the refined plate hypothesis; then, the equations of motion are obtained by using the principle of virtual work. The Galerkin method is considered to solve these equations. The governing equations are tested using the Navier’s solution to verify the exactness of the Galerkin method. The monumental elements, which consist of electric potential, magnetic potential, nonlocal parameter, nanoplate thickness, skew angle, and temperature change, are investigated with regard to the rate of the surface layers of the buckling behavior of a skew METE nanoplate. Based on the numerical results, there is a good similarity between the results of the present work and some accessible cases already mentioned in the literature. It is also shown that by raising the skew angle, the influence of the surface layers on the buckling of the METE nanoplate is decreased. |
doi_str_mv | 10.1007/s00339-018-2088-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2103031128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2103031128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-53abecda0016e264c05584fb53b6caac4ae9cca520726629a38f8c88b7ad12313</originalsourceid><addsrcrecordid>eNp1kMFqGzEQhkVJoI6bB8hN0LPSkbS71h7bkDiFQC_tWYy1s_ba65Wr0RLcF8hrZxcXeupchoH__2A-Ie403GuA1RcGsLZWoJ0y4JzSH8RCF9YoqCxciQXUxUo5W1cfxQ3zHqYpjFmIt29jOPTdsJU4YH_mjmVsJR_oVR5xO1COinoKOUWVd5SO84mcuyAHHOKpx0wsQxy4ayjNGB5Ti4EkDZS2Z9njmRJP8EaOueu7P3NmIsk19pQO3SCPlHex-SSuW-yZbv_upfj19Pjz4Vm9_Fh_f_j6ooLVVValxQ2FBgF0RaYqApSlK9pNaTdVQAwFUh0ClgZWpqpMjda1Lji3WWGjjdV2KT5fuKcUf4_E2e_jmKbX2RsNFqzWxk0pfUmFFJkTtf6UuiOms9fgZ9_-4ttPvv3s289kc-nwaRZB6R_5_6V3rDKGNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103031128</pqid></control><display><type>article</type><title>Buckling analysis of skew magneto-electro-thermo-elastic nanoplates considering surface energy layers and utilizing the Galerkin method</title><source>Springer Nature - Complete Springer Journals</source><creator>Karimi, Morteza ; Shahidi, Ali Reza</creator><creatorcontrib>Karimi, Morteza ; Shahidi, Ali Reza</creatorcontrib><description>In the present study, buckling analysis of skew magneto-electro-thermo-elastic (METE) nanoplates is carried out by the surface layers and nonlocal small-scale hypotheses. The equilibrium governing skew METE nanoplates is attained via the refined plate hypothesis; then, the equations of motion are obtained by using the principle of virtual work. The Galerkin method is considered to solve these equations. The governing equations are tested using the Navier’s solution to verify the exactness of the Galerkin method. The monumental elements, which consist of electric potential, magnetic potential, nonlocal parameter, nanoplate thickness, skew angle, and temperature change, are investigated with regard to the rate of the surface layers of the buckling behavior of a skew METE nanoplate. Based on the numerical results, there is a good similarity between the results of the present work and some accessible cases already mentioned in the literature. It is also shown that by raising the skew angle, the influence of the surface layers on the buckling of the METE nanoplate is decreased.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-018-2088-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Buckling ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Equations of motion ; Galerkin method ; Machines ; Manufacturing ; Materials science ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Skew angle ; Surface energy ; Surface layers ; Surfaces and Interfaces ; Thickness ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2018-10, Vol.124 (10), p.1-15, Article 681</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-53abecda0016e264c05584fb53b6caac4ae9cca520726629a38f8c88b7ad12313</citedby><cites>FETCH-LOGICAL-c316t-53abecda0016e264c05584fb53b6caac4ae9cca520726629a38f8c88b7ad12313</cites><orcidid>0000-0002-8745-0818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-018-2088-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-018-2088-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Karimi, Morteza</creatorcontrib><creatorcontrib>Shahidi, Ali Reza</creatorcontrib><title>Buckling analysis of skew magneto-electro-thermo-elastic nanoplates considering surface energy layers and utilizing the Galerkin method</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>In the present study, buckling analysis of skew magneto-electro-thermo-elastic (METE) nanoplates is carried out by the surface layers and nonlocal small-scale hypotheses. The equilibrium governing skew METE nanoplates is attained via the refined plate hypothesis; then, the equations of motion are obtained by using the principle of virtual work. The Galerkin method is considered to solve these equations. The governing equations are tested using the Navier’s solution to verify the exactness of the Galerkin method. The monumental elements, which consist of electric potential, magnetic potential, nonlocal parameter, nanoplate thickness, skew angle, and temperature change, are investigated with regard to the rate of the surface layers of the buckling behavior of a skew METE nanoplate. Based on the numerical results, there is a good similarity between the results of the present work and some accessible cases already mentioned in the literature. It is also shown that by raising the skew angle, the influence of the surface layers on the buckling of the METE nanoplate is decreased.</description><subject>Applied physics</subject><subject>Buckling</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Equations of motion</subject><subject>Galerkin method</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Skew angle</subject><subject>Surface energy</subject><subject>Surface layers</subject><subject>Surfaces and Interfaces</subject><subject>Thickness</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFqGzEQhkVJoI6bB8hN0LPSkbS71h7bkDiFQC_tWYy1s_ba65Wr0RLcF8hrZxcXeupchoH__2A-Ie403GuA1RcGsLZWoJ0y4JzSH8RCF9YoqCxciQXUxUo5W1cfxQ3zHqYpjFmIt29jOPTdsJU4YH_mjmVsJR_oVR5xO1COinoKOUWVd5SO84mcuyAHHOKpx0wsQxy4ayjNGB5Ti4EkDZS2Z9njmRJP8EaOueu7P3NmIsk19pQO3SCPlHex-SSuW-yZbv_upfj19Pjz4Vm9_Fh_f_j6ooLVVValxQ2FBgF0RaYqApSlK9pNaTdVQAwFUh0ClgZWpqpMjda1Lji3WWGjjdV2KT5fuKcUf4_E2e_jmKbX2RsNFqzWxk0pfUmFFJkTtf6UuiOms9fgZ9_-4ttPvv3s289kc-nwaRZB6R_5_6V3rDKGNw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Karimi, Morteza</creator><creator>Shahidi, Ali Reza</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8745-0818</orcidid></search><sort><creationdate>20181001</creationdate><title>Buckling analysis of skew magneto-electro-thermo-elastic nanoplates considering surface energy layers and utilizing the Galerkin method</title><author>Karimi, Morteza ; Shahidi, Ali Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-53abecda0016e264c05584fb53b6caac4ae9cca520726629a38f8c88b7ad12313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Buckling</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Equations of motion</topic><topic>Galerkin method</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Skew angle</topic><topic>Surface energy</topic><topic>Surface layers</topic><topic>Surfaces and Interfaces</topic><topic>Thickness</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karimi, Morteza</creatorcontrib><creatorcontrib>Shahidi, Ali Reza</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karimi, Morteza</au><au>Shahidi, Ali Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buckling analysis of skew magneto-electro-thermo-elastic nanoplates considering surface energy layers and utilizing the Galerkin method</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>124</volume><issue>10</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>681</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In the present study, buckling analysis of skew magneto-electro-thermo-elastic (METE) nanoplates is carried out by the surface layers and nonlocal small-scale hypotheses. The equilibrium governing skew METE nanoplates is attained via the refined plate hypothesis; then, the equations of motion are obtained by using the principle of virtual work. The Galerkin method is considered to solve these equations. The governing equations are tested using the Navier’s solution to verify the exactness of the Galerkin method. The monumental elements, which consist of electric potential, magnetic potential, nonlocal parameter, nanoplate thickness, skew angle, and temperature change, are investigated with regard to the rate of the surface layers of the buckling behavior of a skew METE nanoplate. Based on the numerical results, there is a good similarity between the results of the present work and some accessible cases already mentioned in the literature. It is also shown that by raising the skew angle, the influence of the surface layers on the buckling of the METE nanoplate is decreased.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-018-2088-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8745-0818</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2018-10, Vol.124 (10), p.1-15, Article 681 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2103031128 |
source | Springer Nature - Complete Springer Journals |
subjects | Applied physics Buckling Characterization and Evaluation of Materials Condensed Matter Physics Equations of motion Galerkin method Machines Manufacturing Materials science Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Processes Skew angle Surface energy Surface layers Surfaces and Interfaces Thickness Thin Films |
title | Buckling analysis of skew magneto-electro-thermo-elastic nanoplates considering surface energy layers and utilizing the Galerkin method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buckling%20analysis%20of%20skew%20magneto-electro-thermo-elastic%20nanoplates%20considering%20surface%20energy%20layers%20and%20utilizing%20the%20Galerkin%20method&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Karimi,%20Morteza&rft.date=2018-10-01&rft.volume=124&rft.issue=10&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=681&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-018-2088-1&rft_dat=%3Cproquest_cross%3E2103031128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103031128&rft_id=info:pmid/&rfr_iscdi=true |